Skip to main content
Log in

DFT and MP2 study of the interaction between corannulene and alkali cations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Corannulene is an unsaturated hydrocarbon composed of fused rings, with one central five-membered ring and five peripheral six-membered rings. Its structure can be considered as a portion of C60. Corannulene is a curved π surface, but unlike C60, it has two accessible different faces: one concave (inside) and one convex (outside). In this work, computational modeling of the binding between alkali metal cations (Li+, Na+, and K+) and corannulene has been performed at the DFT and MP2 levels. Different corannulene···M+ complexes have been studied and the transition states interconnecting local minima were located. The alkali cations can be bound to a five or six membered ring in both faces. At the DFT level, binding to the convex face (outside) is favored relative to the concave face for the three alkali cations studied, as it was previously published. This out preference was found to decrease as cation size increases. At the MP2 level, although a similar trend is found, some different conclusions related to the in/out preference were obtained. According to our results, migration of cations can take place on the convex or on the concave face. Also, there are two ways to transform a concave complex in a convex complex: migration across the edge of corannulene and bowl-to-bowl inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. With a calculated dipole moment of 2.23 D for corannulene, and taking into account that interaction between a charge a and a dipole b is given by -q a μ b /r 2 if the dipole is aligned with the charge (α = 0), the following energies were obtained: −26, −19, and −15 kcal mol–1 for the interaction between Li+, Na+, and K+, respectively, with the convex side of corannulene. These values show a similar trend to those of Table 2, though as we have shown recently, the interaction is mainly of inductive character rather than electrostatic [15].

References

  1. Dougherty DA (1996) Science 271:163–168

    Article  CAS  Google Scholar 

  2. Ma JC, Dougherty DA (1997) Chem Rev 97:1303–1324

    Article  CAS  Google Scholar 

  3. Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  4. Roelens S, Torriti R (1998) J Am Chem Soc 120:12443–12452

    Article  CAS  Google Scholar 

  5. Bartoli S, Roelens S (1999) J Am Chem Soc 121:11908–11909

    Article  CAS  Google Scholar 

  6. Liu T, Gu JD, Tan XJ, Zhu WL, Luo XM, Jiang HL, Ji RY, Chen KX, Silman I, Sussman JL (2001) J Phys Chem A 105:5431–5437

    Article  CAS  Google Scholar 

  7. Liu T, Gu JD, Tan XJ, Zhu WL, Luo XM, Jiang HL, Ji RY, Chen KX, Silman I, Sussman JL (2002) J Phys Chem A 106:157–164

    Article  CAS  Google Scholar 

  8. Bartoli S, Roelens S (2002) J Am Chem Soc 124:8307–8315

    Article  CAS  Google Scholar 

  9. Cheng YH, Liu L, Fu Y, Chen R, Li XS, Guo QX (2002) J Phys Chem A 106:11215–11220

    Article  CAS  Google Scholar 

  10. Frash MN, Hopkinson AC, Bohme DK (2001) J Am Chem Soc 123:6687–6695

    Article  CAS  Google Scholar 

  11. Priyakumar UD, Sastry GN (2003) Tetrahedron Lett 44:6043–6046

    Article  CAS  Google Scholar 

  12. Priyakumar UD, Punnagai M, Mohan GPK, Sastry GN (2004) Tetrahedron 60:3037–3043

    Article  CAS  Google Scholar 

  13. Dunbar RC (2002) J Phys Chem A 106:9809–9819

    Article  CAS  Google Scholar 

  14. Vijay D, Sakurai H, Subramanian V, Sastry GN (2012) Phys Chem Chem Phys 14:3057–3065

    Article  CAS  Google Scholar 

  15. Carrazana-García JA, Rodríguez-Otero J, Cabaleiro-Lago EM (2011) J Phys Chem B 115:2774–2782

    Article  Google Scholar 

  16. Green JR, Dunbar RC (2011) J Phys Chem A 115:4968–4975

    Article  CAS  Google Scholar 

  17. Boys F, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  18. Halkier A, Klopper W, Helgaker T, Jørgensen P, Taylor PR (1999) J Chem Phys 111:9157–9167

    Article  CAS  Google Scholar 

  19. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  20. Sierka M, Hogekamp A, Ahlrichs R (2003) J Chem Phys 118:9136–9148

    Article  CAS  Google Scholar 

  21. Deglmann P, May K, Furche F, Ahlrichs R (2004) Chem Phys Lett 384:103–107

    Article  CAS  Google Scholar 

  22. Hattig C, Weigend F (2000) J Chem Phys 113:5154–5161

    Article  CAS  Google Scholar 

  23. Hattig C, Hald K (2002) Phys Chem Chem Phys 4:2111–2118

    Article  Google Scholar 

  24. Kohn A, Hattig C (2003) J Chem Phys 119:5021–5036

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  26. Martin JML (1996) Chem Phys Lett 262:97–104

    Article  CAS  Google Scholar 

  27. Petrukhina MA, Andreini KW, Mack J, Scott LT (2005) J Org Chem 70:5713–5716

    Article  CAS  Google Scholar 

  28. Josa D, Rodríguez-Otero J, Cabaleiro-Lago EM (2012) Phys Chem Chem Phys 13:21139–21145

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Xunta de Galicia (project INCITE09209103PR). The authors want to express their gratitude to the CESGA (Centro de Supercomputación de Galicia) for the use of their computers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Rodríguez-Otero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 378 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rellán-Piñeiro, M., Rodríguez-Otero, J., Cabaleiro-Lago, E.M. et al. DFT and MP2 study of the interaction between corannulene and alkali cations. J Mol Model 19, 2049–2055 (2013). https://doi.org/10.1007/s00894-012-1632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1632-8

Keywords

Navigation