Skip to main content
Log in

The degradation mechanism of phenol induced by ozone in wastes system

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A distinct understanding for the degradation mechanism of phenol induced by ozone is very essential because the ozonation process, one of the advanced oxidation processes (AOPs), is attractive and popular in wastewater treatment. In the present work, the detailed reactions of ozone and phenol are investigated employing the density functional theory B3LYP method with the 6-311++G (d, p) basis set. The profiles of the potential energy surface are constructed and the possible reaction pathways are indicated. These detailed calculation results suggest two degradation reaction mechanisms. One is phenolic H atom abstraction mechanism, and the other is cyclo-addition and ring-opening mechanism. Considering the effect of solvent water, the calculated energy barriers and reaction enthalpies for the reaction of O3 and phenol in water phase are both lower than those in gas phase, though the degradation mechanisms are not changed. This reveals that these degradation reactions are more favorable in the water solvent. The main reaction products are C6H5OO· radical, a crucial precursor for forming PCDD/Fs and one ring-opening product, which are in good agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Uberoi V, Bhattacharya S (1997) Toxicity and degradability of nitrophenols in anaerobic systems. Water Environ Res 69:146–156

    Article  CAS  Google Scholar 

  2. Veeresh G, Kumar P, Mehrotra I (2005) Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) processa review. Water Res 39:154–170

    Article  CAS  Google Scholar 

  3. Kulkarni U, Dixit S (1991) Destruction of phenol from wastewater by oxidation with sulfite-oxygen. Ind Eng Chem Res 30:1916–1920

    Article  CAS  Google Scholar 

  4. Kujawski W, Warszawski A, Ratajczak W, Porebski T, Capaa W, Ostrowska I (2004) Removal of phenol from wastewater by different separation techniques. Desalination 163:287–296

    Article  CAS  Google Scholar 

  5. Seredynska-Sobecka B, Tomaszewska M, Morawski A (2005) Removal of micropollutants from water by ozonation/biofiltration process. Desalination 182:151–157

    Article  CAS  Google Scholar 

  6. Huang C, Shu H (1995) The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, UV/O3 and UV/H2O2 processes. J Hazard Mater 41:47–64

    Article  CAS  Google Scholar 

  7. Charinpanitkul T, Limsuwan P, Chalotorn C et al (2010) Synergetic removal of aqueous phenol by ozone and activated carbon within three-phase fluidized-bed reactor. J Ind Eng Chem 16:91–95

    Article  CAS  Google Scholar 

  8. Santos A, Yustos P, Rodriguez S, Garcia-Ochoa F (2006) Wet oxidation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media. Appl Catal, B 65:269–281

    Article  CAS  Google Scholar 

  9. Liu H, Liang M, Liu C, Gao Y, Zhou J (2009) Catalytic degradation of phenol in sonolysis by coal ash and H2O2/O3. Chem Eng J 153:131–137

    Article  CAS  Google Scholar 

  10. Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon–a critical review. Chemosphere 58:1049–1070

    Article  CAS  Google Scholar 

  11. Caizares P, Lobato J, Paz R, Rodrigo M, Saez C (2005) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res 39:2687–2703

    Article  Google Scholar 

  12. Turhan K, Uzman S (2008) Removal of phenol from water using ozone. Desalination 229:257–263

    Article  CAS  Google Scholar 

  13. Lesko T, Colussi A, Hoffmann M (2006) Sonochemical decomposition of phenolevidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environ Sci Technol 40:6818–6823

    Article  CAS  Google Scholar 

  14. Gurol M, Vatistas R (1987) Oxidation of phenolic compounds by ozone and ozone + UV radiationa comparative study. Water Res 21:895–900

    Article  CAS  Google Scholar 

  15. Esplugas S, Giménez J, Contreras S, Pascual E, Rodríguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042

    Article  CAS  Google Scholar 

  16. Rosenfeldt E, Linden K, Canonica S, Von Gunten U (2006) Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Res 40:3695–3704

    Article  CAS  Google Scholar 

  17. Lin S, Wang C (2003) Ozonation of phenolic wastewater in a gas-induced reactor with a fixed granular activated carbon bed. Ind Eng Chem Res 42:1648–1653

    Article  CAS  Google Scholar 

  18. Li L, Zhu W, Zhang P, Lu P, Zhang Q, Zhang Z (2007) UV/O3-BAC process for removing organic pollutants in secondary effluents. Desalination 207:114–124

    Article  CAS  Google Scholar 

  19. Faria PCC, Órfão JJM, Pereira MFR (2006) Ozone decomposition in water catalyzed by activated carboninfluence of chemical and textural properties. Ind Eng Chem Res 45:2715–2721

    Article  CAS  Google Scholar 

  20. Gurol M, Singer P (1982) Kinetics of ozone decompositiona dynamic approach. Environ Sci Technol 16:377–383

    Article  CAS  Google Scholar 

  21. Bremner D, Burgess A, Houllemare D, Namkung K (2006) Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Appl Catal, B 63:15–19

    Article  CAS  Google Scholar 

  22. Ning B, Graham NJD, Zhang Y (2007) Degradation of octylphenol and nonylphenol by ozone - Part IDirect reaction. Chemosphere 68:1163–1172

    Article  CAS  Google Scholar 

  23. Morales-Roque J, Carrillo-Cárdenas M, Jayanthi N, Cruz J, Pandiyan T (2009) Theoretical and experimental interpretations of phenol oxidation by the hydroxyl radical. J Mol Struct (THEOCHEM) 910:74–79

    Article  CAS  Google Scholar 

  24. Lundqvist M, Eriksson L (2000) Hydroxyl radical reactions with phenol as a model for generation of biologically reactive tyrosyl radicals. J Phys Chem B 104:848–855

    Article  CAS  Google Scholar 

  25. Namkung K, Burgess A, Bremner D, Staines H (2008) Advanced Fenton processing of aqueous phenol solutionsa continuous system study including sonication effects. Ultrason Sonochem 15:171–176

    Article  CAS  Google Scholar 

  26. Eisenhauer H (1964) Oxidation of phenolic wastes. J Water Pollut Control Fed 36:1116–1128

    CAS  Google Scholar 

  27. Plesničar B, Tuttle T, Cerkovnik J, Koller J, Cremer D (2003) Mechanism of formation of hydrogen trioxide (HOOOH) in the ozonation of 1, 2-diphenylhydrazine and 1, 2-dimethylhydrazineAn experimental and theoretical investigation. J Am Chem Soc 125:11553–11564

    Article  Google Scholar 

  28. Manojlovic D, Ostojic DR, Obradovic BM, Kuraica MM, Krsmanovic VD, Puric J (2007) Removal of phenol and chlorophenols from water by new ozone generator. Desalination 213:116–122

    Article  CAS  Google Scholar 

  29. Eisenhauer H (1968) The ozonization of phenolic wastes. J Water Pollut Control Fed 40:1887–1899

    CAS  Google Scholar 

  30. Shen Y, Lei L, Zhang X, Zhou M, Zhang Y (2008) Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges. J Hazard Mater 150:713–722

    Article  CAS  Google Scholar 

  31. Hoeben W, Veldhuizen E (2000) The degradation of aqueous phenol solutions by pulsed positive corona discharges. Plasma Sources Sci Technol 9:361–365

    Article  CAS  Google Scholar 

  32. Zhang Q, Qu X, Wang W (2007) Mechanism of OH-initiated atmospheric photooxidation of dichlorvos:a quantum mechanical study. Environ Sci Technol 41:6109–6116

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 2003. Revision D.01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  34. Zhao Y, Truhlar DG (2008) How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? J Phys Chem A 112:1095–1099

    Article  CAS  Google Scholar 

  35. Lozynski M, Rusinska-Roszak D, Mack HG (1998) Hydrogen bonding and density functional calculationsthe B3LYP approach as the shortest way to MP2 results. J Phys Chem A 102:2899–2903

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr R (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Fukui K (1981) The path of chemical reactions-the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  39. Gonzalez C, Schlegel H (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  40. Pauling L (1960) The nature of the chemical bond. in. Cornell University Press, Ithaca, NY

    Google Scholar 

  41. Pakiari AH, Nazari F, Weinhold F (2003) The study of relationship between chemical geometry and electronic configuration of non-Walsh systems. J Mol Struct (THEOCHEM) 629:77–81

    Article  CAS  Google Scholar 

  42. Linnett J (1964) The electronic structure of moleculesa new approach. Methuen London

  43. Pakiari A, Nazari F (2003) New suggestion for electronic structure of the ground state of ozone. J Mol Struct THEOCHEM 640:109–115

    Article  CAS  Google Scholar 

  44. Fujimoto H (1997) Frontier orbitals and reaction pathsselected papers of Kenichi Fukui. World Scientific, Singapore Inc

  45. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, New York

    Google Scholar 

  46. Vleeschouwer FD, Speybroeck VV, Waroquier M, Geerlings P, Proft FD (2008) An intrinsic radical stability scale from the perspective of bond dissociation enthalpies:a companion to radical electrophilicities. J Org Chem 73:9109–9120

    Article  Google Scholar 

  47. de Heer MI, Korth H-G, Mulder P (1999) Poly methoxy phenols in solution O − H bond dissociation enthalpies, structures, and hydrogen bonding. J Org Chem 64:6969–6975

    Article  Google Scholar 

  48. Yamada S, Naito Y, Takada M, Nakai S, Hosomi M (2008) Photodegradation of hexachlorobenzene and theoretical prediction of its degradation pathways using quantum chemical calculation. Chemosphere 70:731–736

    Article  CAS  Google Scholar 

  49. Ren X, Sun Y, Zhu L, Cui Z (2010) Theoretical studies on the OH-initiated photodegradation mechanism of dicofol. Comput Theor Chem 963:365–370

    Article  Google Scholar 

  50. Suegara J, Lee BD, Espino MP, Nakai S, Hosomi M (2005) Photodegradation of pentachlorophenol and its degradation pathways predicted using density functional theory. Chemosphere 61:341–346

    Article  CAS  Google Scholar 

  51. Lim DH, Lastoskie CM (2009) Density functional theory studies on the relative reactivity of chloroethenes on zerovalent iron. Environ Sci Technol 43:5443–5448

    Article  CAS  Google Scholar 

  52. Zhao Y, Zhang R, Wang H, He M, Sun X, Zhang Q, Wang W, Ru M (2010) Mechanism of atmospheric ozonolysis of sabineneA DFT study. J Mol Struct (THEOCHEM) 942:32–37

    Article  CAS  Google Scholar 

  53. Denisova T, Denisov E (1998) Reactivity of ozone as a hydrogen-atom acceptor in reactions with antioxidants. Polym Degrad Stab 60:345–350

    Article  CAS  Google Scholar 

  54. Janoschek R, Fabian W (2003) Thermodynamic properties of chlorinated phenols, cyclo-C5 compounds, and derived radicals from G3MP2B3 calculations. J Mol Struct 661:635–645

    Article  Google Scholar 

  55. Berho F, Lesclaux R (1997) The phenoxy radicalUV spectrum and kinetics of gas-phase reactions with itself and with oxygen. Chem Phys Lett 279:289–296

    Article  CAS  Google Scholar 

  56. Asatryan R, Davtyan A, Khachatryan L, Dellinger B (2005) Molecular modeling studies of the reactions of phenoxy radical dimersPathways to dibenzofurans. J Phys Chem A 109:11198–11205

    Article  CAS  Google Scholar 

  57. Altarawneh M, Dlugogorski BZ, Kennedy EM, Mackie JC (2009) Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Prog Energy Combust Sci 35:245–274

    Article  CAS  Google Scholar 

  58. Asatryan R, Davtyan A, Khachatryan L, Dellinger B (2002) Theoretical study of open-shell IPSO-addition and bis-keto dimer interconversion reactions related to gas-phase formation of PCDD/FS from chlorinated phenols. Organohalogen Compd 56:277–280

    CAS  Google Scholar 

  59. Plesničar B, Cerkovnik J, Tekavec T, Koller J (1998) On the mechanism of the ozonation of isopropyl alcohol:an experimental and density functional theoretical investigation 17O NMR Spectra of hydrogen trioxide (HOOOH) and the hydrotrioxide of isopropyl alcohol. J Am Chem Soc 120:8005–8006

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by a project of Shandong Province Science and Technology Department (No. 2010177) and a Project of Shandong Province Higher Educational Science and Technology Program (No. J09LB08). We also thank China Postdoctoral Science Foundation (No.20090461215 and 20100481303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Zhaojie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youmin, S., Xiaohua, R., Zhaojie, C. et al. The degradation mechanism of phenol induced by ozone in wastes system. J Mol Model 18, 3821–3830 (2012). https://doi.org/10.1007/s00894-012-1376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1376-5

Keywords

Navigation