Skip to main content

Advertisement

Log in

A comparative study of HIV-1 and HTLV-I protease structure and dynamics reveals a conserved residue interaction network

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The two retroviruses human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus type 1 (HIV-1) are the causative agents of severe and fatal diseases including adult T-cell leukemia and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease that is essential for replication and therefore represents a key target for drugs interfering with viral infection. The retroviral proteases from HIV-1 and HTLV-I share 31% sequence identity and high structural similarities. Yet, their substrate specificities and inhibition profiles differ substantially. In this study, we performed all-atom molecular dynamics (MD) simulations for both enzymes in their ligand-free states and in complex with model substrates in order to compare their dynamic behaviors and enhance our understanding of the correlation between sequence, structure, and dynamics in this protein family. We found extensive similarities in both local and overall protein dynamics, as well as in the energetics of their interactions with model substrates. Interestingly, those residues that are important for strong ligand binding are frequently not conserved in sequence, thereby offering an explanation for the differences in binding specificity. Moreover, we identified an interaction network of contacts between conserved residues that interconnects secondary structure elements and serves as a scaffold for the protein fold. This interaction network is conformationally stable over time and may provide an explanation for the highly similar dynamic behavior of the two retroviral proteases, even in the light of their rather low overall sequence identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ATL:

Adult T-cell leukemia

CA/NC cleavage site:

Protease cleavage site in HTLV-I polyprotein precursor between the capsid and nucleocapsid proteins

HIV-PR:

HIV-1 protease

HTLV-PR:

HTLV-I protease

MA/CA cleavage site:

Protease cleavage site in HIV-1 and HTLV-I polyprotein precursors between the matrix and capsid proteins

MD:

Molecular dynamics

p2/NC cleavage site:

Protease cleavage site in HIV-1 polyprotein precursor between the p2 and nucleocapsid proteins

PDB:

Protein Data Bank

RMSF:

Root-mean-square fluctuation

TSP/HAM:

Tropical spastic paraparesis

References

  1. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77:7415–7419

    Article  CAS  Google Scholar 

  2. Yoshida M, Seiki M, Yamaguchi K, Takatsuki K (1984) Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in the disease. Proc Natl Acad Sci USA 81:2534–2537

    Article  CAS  Google Scholar 

  3. Gessain A, Barin F, Vernant JC, Gout O, Maurs L, Calender A, de The G (1985) Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 2(8452):407–410

    Article  CAS  Google Scholar 

  4. LaGrenade L, Hanchard B, Fletcher V, Cranston B, Blattner W (1990) Infective dermatitis of Jamaican children: a marker for HTLV-I infection. Lancet 336(8727):1345–1347

    Article  CAS  Google Scholar 

  5. Mochizuki M, Watanabe T, Yamaguchi K, Takatsuki K, Yoshimura K, Shirao M, Nakashima S, Mori S, Araki S, Miyata N (1992) HTLV-I uveitis: a distinct clinical entity caused by HTLV-I. Jpn J Cancer Res 83:236–239

    Article  CAS  Google Scholar 

  6. Morgan OS, Rodgers-Johnson P, Mora C, Char G (1989) HTLV-1 and polymyositis in Jamaica. Lancet 2(8673):1184–1187

    Article  CAS  Google Scholar 

  7. Nishioka K, Maruyama I, Sato K, Kitajima I, Nakajima Y, Osame M (1989) Chronic inflammatory arthropathy associated with HTLV-I. Lancet 1(8635):441–441

    Article  CAS  Google Scholar 

  8. de The G, Bomford R (1993) An HTLV-I vaccine: why, how, for whom? AIDS Res Hum Retroviruses 9:381–386

    Article  Google Scholar 

  9. Gessain A (1996) Virological aspects of tropical spastic paraparesis/HTLV-I associated myelopathy and HTLV-I infection. J Neurovirol 2:299–306

    Article  CAS  Google Scholar 

  10. Zucker-Franklin D, Pancake BA (1998) Human T-cell lymphotropic virus type 1 tax among American blood donors. Clin Diagn Lab Immunol 5:831–835

    CAS  Google Scholar 

  11. Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vézinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Article  Google Scholar 

  12. Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Bea S (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224:500–503

    Article  CAS  Google Scholar 

  13. Kohl NE, Emmi EA, Schleif WA, Davies LJ, Heimbach JC, Dixon RAF (1988) Active human immunodeciency virus protease is required for viral infectivity. Proc Natl Acad Sci 85:686–690

    Google Scholar 

  14. Ishitsuka K, Tamura K (2008) Treatment of adult T-cell leukemia/lymphoma: past, present, and future. Eur J Haematol 80:185–196

    Article  CAS  Google Scholar 

  15. Louis JM, Oroszlan S, Tozser J (1999) Stabilization from autoproteolysis and kinetic characterization of the human T-cell leukemia virus type 1 proteinase. J Biol Chem 274:6660–6666

    Article  CAS  Google Scholar 

  16. Li M, Laco GS, Jaskolski M, Rozycki J, Alexandratos J, Wlodawer A, Gustchina A (2005) Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design. Proc Natl Acad Sci USA 102:18332–18337

    Article  CAS  Google Scholar 

  17. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  18. Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SB, Wlodawer A (1989) Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Å resolution. Science 246:1149–1152

    Google Scholar 

  19. Wartha F, Horn AHC, Meiselbach H, Sticht H (2005) Molecular dynamics simulations of HIV-1 protease suggest different mechanisms contributing to drug resistance. J Chem Theory Comput 1:315–324

    Google Scholar 

  20. Dirauf P, Meiselbach H, Sticht H (2010) Effects of the V82A and I54V mutations on the dynamics and ligand binding properties of HIV-1 protease. J Mol Model 16:1577–1583

    Article  CAS  Google Scholar 

  21. Meiselbach H, Horn AH, Harrer T, Sticht H (2007) Insights into amprenavir resistance in E35D HIV-1 protease mutation from molecular dynamics and binding free-energy calculations. J Mol Model 13:297–304

    Article  CAS  Google Scholar 

  22. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pK a values for protein-ligand complexes. Proteins 73:765–783

    Google Scholar 

  23. Smith R, Brereton IM, Chai RY, Kent SB (1996) Ionization states of the catalytic residues in HIV-1 protease. Nat Struct Biol 3:946–950

    Article  CAS  Google Scholar 

  24. Case DA, Cheatham T, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods R (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  25. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, KMerz M, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  26. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE 3rd, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp Phys Commun 91:1–41

    Google Scholar 

  27. Cheatham TE 3rd, Cieplak P, Kollman PA (1999) A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn 16:845–862

    CAS  Google Scholar 

  28. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KMJ, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulaton of proteins, nucleic acids and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  29. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  30. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  31. Darden TA, York DM, Pedersen LG (1993) Particle mesh Ewald. An N.log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  32. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  33. Tripos (1991–2008) Sybyl 7.3. Tripos, St. Louis

  34. Accelrys (2005) DS ViewerPro Suite 6.0. Accelrys, San Diego

  35. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8:127–134

    Google Scholar 

  36. Luukkonen BG, Tan W, Fenyo EM, Schwartz S (1995) Analysis of cross reactivity of retrovirus proteases using a vaccinia virus-T7 RNA polymerase-based expression system. J Gen Virol 76:2169–2180

    Article  Google Scholar 

  37. Bagossi P, Kadas J, Miklossy G, Boross P, Weber IT, Tozser J (2004) Development of a microtiter plate fluorescent assay for inhibition studies on the HTLV-1 and HIV-1 proteinases. J Virol Methods 119:87–93

    Article  CAS  Google Scholar 

  38. Kadas J, Weber IT, Bagossi P, Miklossy G, Boross P, Oroszlan S, Tozser J (2004) Narrow substrate specificity and sensitivity toward ligand-binding site mutations of human T-cell leukemia virus type 1 protease. J Biol Chem 279:27148–27157

    Google Scholar 

  39. Tozser J, Zahuczky G, Bagossi P, Louis JM, Copeland TD, Oroszlan S, Harrison RW, Weber IT (2000) Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases. Eur J Biochem 267:6287–6295

    Article  CAS  Google Scholar 

  40. Tozser J, Gustchina A, Weber IT, Blaha I, Wondrak EM, Oroszlan S (1991) Studies on the role of the S4 substrate binding site of HIV proteinases. FEBS Lett 279:356–360

    Article  CAS  Google Scholar 

  41. Gustchina A, Weber IT (1990) Comparison of inhibitor binding in HIV-1 protease and in non-viral aspartic proteases: the role of the flap. FEBS Lett 269:269–272

    Article  CAS  Google Scholar 

  42. Furfine ES, D'Souza E, Ingold KJ, Leban JJ, Spector T, Porter DJ (1992) Two-step binding mechanism for HIV protease inhibitors. Biochemistry 31:7886–7891

    Article  CAS  Google Scholar 

  43. Rodriguez EJ, Debouck C, Deckman IC, Abu-Soud H, Raushel FM, Meek TD (1993) Inhibitor binding to the Phe53Trp mutant of HIV-1 protease promotes conformational changes detectable by spectrofluorometry. Biochemistry 32:3557–3563

    Article  CAS  Google Scholar 

  44. Hornak V, Okur A, Rizzo RC, Simmerling C (2006) HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc Natl Acad Sci USA 103:915–920

    Article  CAS  Google Scholar 

  45. Perryman AL, Lin JH, McCammon JA (2004) HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs. Protein Sci 13:1108–1123

    Article  CAS  Google Scholar 

  46. Toth G, Borics A (2006) Closing of the flaps of HIV-1 protease induced by substrate binding: a model of a flap closing mechanism in retroviral aspartic proteases. Biochemistry 45:6606–6614

    Article  CAS  Google Scholar 

  47. Spinelli S, Liu QZ, Alzari PM, Hirel PH, Poljak RJ (1991) The three-dimensional structure of the aspartyl protease from the HIV-1 isolate BRU. Biochimie 73:1391–1396

    Article  CAS  Google Scholar 

  48. Freedberg DI, Ishima R, Jacob J, Wang YX, Kustanovich I, Louis JM, Torchia DA (2002) Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci 11:221–232

    Article  CAS  Google Scholar 

  49. Ishima R, Freedberg DI, Wang YX, Louis JM, Torchia DA (1999) Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function. Structure 7:1047–1055

    Article  CAS  Google Scholar 

  50. Galiano L, Ding F, Veloro AM, Blackburn ME, Simmerling C, Fanucci GE (2009) Drug pressure selected mutations in HIV-1 protease alter flap conformations. J Am Chem Soc 131:430–431

    Article  CAS  Google Scholar 

  51. Heaslet H, Rosenfeld R, Giffin M, Lin YC, Tam K, Torbett BE, Elder JH, McRee DE, Stout CD (2007) Conformational flexibility in the flap domains of ligand-free HIV protease. Acta Crystallogr D Biol Crystallogr 63:866–875

    Article  Google Scholar 

  52. Kear JL, Blackburn ME, Veloro AM, Dunn BM, Fanucci GE (2009) Subtype polymorphisms among HIV-1 protease variants confer altered flap conformations and flexibility. J Am Chem Soc 131:14650–14651

    Article  CAS  Google Scholar 

  53. Seibold SA, Cukier RI (2007) A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions. Proteins 69:551–565

    Article  CAS  Google Scholar 

  54. HIVDB Team (1998–2008) Stanford HIV Database. http://hivdb.stanford.edu/

  55. Perryman AL, Zhang Q, Soutter HH, Rosenfeld R, McRee DE, Olson AJ, Elder JE, David Stout C (2010) Fragment-based screen against HIV protease. Chem Biol Drug Des 75:257–268

    Article  CAS  Google Scholar 

  56. Alcaro S, Artese A, Ceccherini-Silberstein F, Ortuso F, Perno CF, Sing T, Svicher V (2009) Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance. J Chem Inf Model 49:1751–1761

    Article  CAS  Google Scholar 

  57. Kontijevskis A, Prusis P, Petrovska R, Yahorava S, Mutulis F, Mutule I, Komorowski J, Wikberg JE (2007) A look inside HIV resistance through retroviral protease interaction maps. PLoS Comput Biol 3:424–435

    Article  CAS  Google Scholar 

  58. Mahalingam B, Louis JM, Reed CC, Adomat JM, Krouse J, Wang YF, Harrison RW, Weber IT (1999) Structural and kinetic analysis of drug resistant mutants of HIV-1 protease. Eur J Biochem 263:238–245

    Article  CAS  Google Scholar 

  59. Weber IT, Harrison RW (1999) Molecular mechanics analysis of drug-resistant mutants of HIV protease. Protein Eng 12:469–474

    Article  CAS  Google Scholar 

  60. Kozisek M, Bray J, Rezacova P, Saskova K, Brynda J, Pokorna J, Mammano F, Rulisek L, Konvalinka J (2007) Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. J Mol Biol 374:1005–1016

    Article  CAS  Google Scholar 

  61. Ode H, Neya S, Hata M, Sugiura W, Hoshino T (2006) Computational simulations of HIV-1 proteases–multi-drug resistance due to nonactive site mutation L90M. J Am Chem Soc 128:7887–7895

    Article  CAS  Google Scholar 

  62. Sherman W, Tidor B (2008) Novel method for probing the specificity binding profile of ligands: applications to HIV protease. Chem Biol Drug Des 71:387–407

    Article  CAS  Google Scholar 

  63. Foulkes-Murzycki JE, Scott WR, Schiffer CA (2007) Hydrophobic sliding: a possible mechanism for drug resistance in human immunodeficiency virus type 1 protease. Structure 15:225–233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Regionales Rechenzentrum Erlangen (RRZE) for technical support and the Deutsche Forschungsgemeinschaft (graduate program GRK1071) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Sticht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

A plot showing the potential energy as a function of the simulation time, and a graph of the van der Waals and electrostatic interaction energies of HTLV-PR with its model substrate (PDF 346 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rücker, P., Horn, A.H.C., Meiselbach, H. et al. A comparative study of HIV-1 and HTLV-I protease structure and dynamics reveals a conserved residue interaction network. J Mol Model 17, 2693–2705 (2011). https://doi.org/10.1007/s00894-011-0971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0971-1

Keywords

Navigation