Skip to main content
Log in

Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The Antarctic endophytic fungus (strain ITA1-CCMA 952) was isolated from the moss Schistidium antarctici found in Admiralty Bay, King George Island, Antarctica. Strain ITA1-CCMA 952 was assigned to the specie Mortierella alpina by phylogenetic analysis based on 18S rRNA gene sequences. This strain produces high levels of polyunsaturated fatty acids (PUFAs), including y-(gamma) linolenic acid and arachidonic acid, which when combined represents 48.3 % of the total fatty acid content. Fungal extracts demonstrated strong antioxidant activity with the EC50 value of 48.7 μg mL−1 and also a strong antibacterial activity, mainly against the following bacteria: Escherichia coli, with a MIC of 26.9 μg mL−1 and Pseudomonas aeruginosa and Enterococcus faecalis, both with a MIC of 107 μg mL−1. A GC–MS analysis of the chloroform fraction obtained from the crude extract revealed the presence of potential antimicrobials (Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) and Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)) as the major compounds. Therefore, the M. alpina strain ITA1-CCMA 952 is a promising fungus for the biotechnological production of antibiotics, antioxidant substances and PUFAs. This study highlights the need for more research in extreme environments, such as Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Bédys J (2005) Bioactive microbial metabolites. A person view. J Antibiot. 58(1):1–26

    Article  Google Scholar 

  • Brady SF, Clardy J (2000) CR377, a new pentaketide antifungal agent isolated from an endophytic fungus. J Nat Prod 63:1447–1448

    Article  CAS  PubMed  Google Scholar 

  • Buss T, Hayes MA (2000) Mushrooms, microbes and medicines. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 275–276

    Google Scholar 

  • Caretta G, Del Frate G, Mangiarotti AM (1994) A record of Arthrobotrys tortor Jarowaja and Engyodontium album (Limber) de Hoog from Antarctic. Bol Micol 9:9–163

    Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane liquid fatty acids in cold adaptation. Cell. Mol. Biol. 50:631–664

    CAS  PubMed  Google Scholar 

  • Cohen Z, Ratledge C (2005) Since cell oils. AOCS Press, Champaign, ISBN: 1–893997–80, pp 4, 257

  • Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7

    Google Scholar 

  • Demain AL (1981) Industrial microbiology. Science 214:987–994

    Article  CAS  PubMed  Google Scholar 

  • Dyal S, Narine SS (2005) Implications of the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res Int 38:445–467

    Article  CAS  Google Scholar 

  • Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: Occurrence, biological activities and applications 15(10):401–409

  • Grammer A (1976) Antibiotic sensitivity and assay test. In: Collins CH, Lyne PM (eds) Microbiological methods. Butterworths, London

    Google Scholar 

  • Higashiyama K, Fujikawa S, Park EY, Shimizu S (2002) Production of arachidonic acid by Mortierella fungi. Biotechnol Bioprocess Eng 7:252–262

    Article  CAS  Google Scholar 

  • Jacobs A, Botha A, Van Zyl WH (2009) The production of eicosapentaenoic acid by representatives of the genus Mortierella grown on brewrs’ spent grain. Biologia 64(5):871–876

    Article  CAS  Google Scholar 

  • Jadhav G, Salunkhe D, Nerkar D, Bhadekar R (2010) Isolation and characterization of salt-tolerant nitrogen-fixing microorganisms from food. EurAsia J Biosci 4:33–40

    Article  Google Scholar 

  • Liu S, Zhang P, Cong B, Liu C, Lin X, Shen J, Huang X (2010) Molecular cloning and expression analysis of a cytosolic Hsp70 gene Antarctic ice algae Chlamydomonas sp. ICE-L. Extremophiles 14(3):329–337

    Article  PubMed  Google Scholar 

  • Malinowski DP, Belesky DP, Lewis GC (2005) Abiotic stresses in endophyte grasses. In: Craig AR, Charles PW, Donald ES (eds) Neotyphodium in cool-season grasses. Blackwell, Ames, pp 187–199

    Chapter  Google Scholar 

  • Milardovic S, Ivekovic D, Grabaric BS (2006) A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 68:175–180

    Article  CAS  PubMed  Google Scholar 

  • Nan ZB, Li CJ (2000) Neotyphodium in native grasses in China and observations on endophyte-host interaction. In: Paul VH, Dapprich PD (eds) Proceedings of the 4th international neotyphodium-grass interactions symposium, Soest, pp 41–50

  • NCCLS (2004) Performance standards for antimicrobial susceptibility testing. In: 4th NCCLS documents M100-S14. The National Committee for Clinical Laboratory Standards, Wayne

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:541–568

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Galand PE (2008) Microbial biodiversity and biogeography. In: Laybourn-Parry, J.a.V.W (ed) High latitude aquatic ecosystems. Limnology of the polar regions. Oxford University Press, Oxford, pp 213–230

  • Santos SN, Oliveira LKX, de Melo IS, da Silva Velozo E, de Abreu Roque MR (2011a) Antifungal activity of bacterial strains from the rhizosphere of Stachytarpheta crassifolia. Afr J Biotechnol 10(25):4996–5000

    Google Scholar 

  • Santos SN, Castanha RF, Haber LL, Scramin S, Marques MOM, Melo IS (2011b) Determinação quantitativa da atividade antioxidante de extratos brutos de micro-organismos pelo método de captura de radical livre DPPH. Comum. Téc., Embrapa Meio Ambiente, pp 1–5

  • Santos SN, Ferraris FK, Souza AO, Henriques MG, Melo IS (2012) Endophytic fungi from Combretum leprosum with potential anticancer and antifungal activity. Symbiosis 58(1–3):109–117

    Article  Google Scholar 

  • Schardl CL, Leuchtmann A (2004) The Epichloë endophytes of grasses and the symbiotic continuum. In: Dighton J, White JF, Oudemans P (eds) The fungal community, 3rd edn. CRC Press, Boca Raton, pp 475–503

    Google Scholar 

  • Skerratt JH, Bowman JP, Nichols PD (2002) Shewanella olleyana sp. nov. a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microb 52:2101–2106

    Article  CAS  Google Scholar 

  • Streekstra H (1997) Review on the safety of Mortierella alpina for the production of food ingredients, such as arachidonic acid. J Biotechnol 56(3):153–165

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microb. Mol. Biol. Rev 67(4):491–502

    Article  CAS  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Yano Y, Nakayama A, Yoshida K (1997) Distribution of polyunsaturated fatty acid in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 63:2572–2577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Li C, Nan Z (2012) Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci China Life Sci. 55(9):793–799

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Débora Renata Cassoli de Souza for the GC–MS analysis of compounds obtained in this study and INCT Criosfera for their support and assistance in collecting the samples in Antarctica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar S. Melo.

Additional information

Communicated by H. Atomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melo, I.S., Santos, S.N., Rosa, L.H. et al. Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici . Extremophiles 18, 15–23 (2014). https://doi.org/10.1007/s00792-013-0588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0588-7

Keywords

Navigation