Skip to main content
Log in

A quantitative study of the biotransformation of insulin-enhancing VO2+ compounds

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Potentiometric (pH titrations) and spectroscopic (electron paramagnetic resonance) methods have been used to determine the thermodynamic stability constants of the various VO2+ complexes formed after the interaction of four insulin-enhancing vanadium compounds, [VO(6-mepic)2], cis-[VO(pic)2(H2O)], [VO(acac)2], and [VO(dhp)2], where 6-mepic, pic, acac, and dhp indicate the deprotonated forms of 6-methylpicolinic acid, picolinic acid, acetylacetone, and 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone, with high molecular mass [human serum apotransferrin (hTf) and human serum albumin (HSA)] and low molecular mass (lactate) components of blood serum. In particular, log β values for the formation of (VO)hTf (13.0 ± 0.5), (VO)2hTf (25.5 ± 0.5), (VO)HSA (9.1 ± 1.0), (VO) 2 d HSA (20.9 ± 1.0), cis-VO(dhp)2(hTf) (25.5 ± 0.6), cis-VO(dhp)2(HSA) (25.9 ± 0.6), (VO)hTf(lact) (14.5 ± 0.8), (VO)2hTf(lact)2 (28.5 ± 0.8), (VO)hTf(pic) (15.6 ± 0.8), and (VO)2hTf(pic)2 (30.4 ± 0.8) were determined. The values of the stability constants were used to compare the calculated composition of ternary and quinary systems with that recently proposed by some of us through electron paramagnetic resonance and density functional theory methods (Sanna et al. in Inorg. Chem. 49:174–187, 2010) and to predict the distribution of VO2+ ion in blood serum when one of the four insulin-enhancing vanadium compounds studied, [VO(carrier)2], is administered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) Chem Rev 104:849–902

    Article  CAS  PubMed  Google Scholar 

  2. Thompson KH, McNeill JH, Orvig C (1999) Chem Rev 99:2561–2571

    Google Scholar 

  3. Thompson KH, Orvig C (2000) Dalton Trans 2885–2892

  4. Thompson KH, Orvig C (2001) Coord Chem Rev 219–221:1033–1053

  5. Shechter Y, Goldwaser I, Mironchik M, Fridkin M, Gefel D (2003) Coord Chem Rev 237:3–11

    Article  CAS  Google Scholar 

  6. Kawabe K, Yoshikawa Y, Adachi Y, Sakurai H (2006) Life Sci 78:2860–2866

    Article  CAS  PubMed  Google Scholar 

  7. Rehder D (2008) Bioinorganic vanadium chemistry. Wiley, Chichester

    Book  Google Scholar 

  8. Tolman EL. Barris E, Burns M, Pansini A, Partridge R (1979) Life Sci 25:1159–1164

    Google Scholar 

  9. Shechter Y, Karlish SJD (1980) Nature 284:556–558

    Article  CAS  PubMed  Google Scholar 

  10. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-Sun G, Fantus IG, Ng JB, Hall DA, Soo Lum B, Shaver A (1994) J Biol Chem 269:4596–4606

    CAS  PubMed  Google Scholar 

  11. Posner BI, Yang CR, Shaver A (1998) In: Tracey AS, Crans DC (eds) Vanadium compounds: chemistry, biochemistry, and therapeutic applications. ACS symposium series 711. American Chemical Society, Washington, pp 316–328

  12. Ou H, Yan L, Mustafi D, Makinen MW, Brady MJ (2005) J Biol Inorg Chem 10:874–886

    Article  CAS  PubMed  Google Scholar 

  13. Yasui H, Adachi Y, Katoh A, Sakurai H (2007) J Biol Inorg Chem 12:843–853

    Article  CAS  PubMed  Google Scholar 

  14. Sakurai H, Fujii K, Watanabe H, Tamura H (1995) Biochem Biophys Res Commun 214:1095–1101

    Article  CAS  PubMed  Google Scholar 

  15. Shechter Y, Eldberg G, Shisheva A, Gefel D, Sekar N, Qian S, Bruck R, Gershonov E, Crans DC, Goldwasser Y, Fridkin M, Li J (1998) In: Tracey AS, Crans DC (eds) Vanadium compounds: chemistry, biochemistry, and therapeutic applications. ACS symposium series 711. American Chemical Society, Washington, pp 308–315

  16. Marzban L, McNeill JH (2003) J Trace Elem Exp Med 16:253–267

    Article  CAS  Google Scholar 

  17. Thompson KH, Orvig C (2006) J Inorg Biochem 100:1925–1935

    Article  CAS  PubMed  Google Scholar 

  18. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) J Inorg Biochem 103:554–558

    Article  CAS  PubMed  Google Scholar 

  19. Sakurai H, Tsuchiya K, Nukatsuka M, Kawada J, Ishikawa S, Komatsu M (1990) J Clin Biochem Nutr 8:193–200

    CAS  Google Scholar 

  20. Fukui K, Fujisawa Y, Ohya-Nishiguchi H, Kamada H, Sakurai H (1999) J Inorg Biochem 77:215–224

    Article  CAS  PubMed  Google Scholar 

  21. Fujimoto S, Fujii K, Yasui H, Matsushita R, Takada J, Sakurai H (1997) J Clin Biochem Nutr 23:113–129

    CAS  Google Scholar 

  22. Fujisawa Y, Sakurai H (1999) Chem Pharm Bull 47:1668–1670

    CAS  PubMed  Google Scholar 

  23. Sanna D, Micera G, Garribba E (2009) Inorg Chem 48:5747–5757

    Article  CAS  PubMed  Google Scholar 

  24. Chasteen ND (1977) Coord Chem Rev 22:1–36

    Google Scholar 

  25. Chasteen ND, Grady JK, Holloway CE (1986) Inorg Chem 25:2754–2760

    Article  CAS  Google Scholar 

  26. Liboiron BD, Thompson KH, Hanson GR, Lam E, Aebischer N, Orvig C (2005) J Am Chem Soc 127:5104–5115

    Article  CAS  PubMed  Google Scholar 

  27. Thompson KH, Liboiron BD, Hanson GR, Orvig C (2005) In: Sessler JL, Doctrow SR, McMurry TJ, Lippard SJ (eds) Medicinal inorganic chemistry. ACS symposium series 903. American Chemical Society, Washington, pp 384–399

  28. Willsky GR, Goldfine AB, Kostyniak PJ, McNeill JH, Yang LQ, Khan HR, Crans DC (2001) J Inorg Biochem 85:33–42

    Article  CAS  PubMed  Google Scholar 

  29. Yasui H, Takechi K, Sakurai H (2000) J Inorg Biochem 78:185–196

    Article  CAS  PubMed  Google Scholar 

  30. Sanna D, Micera G, Garribba E (2010) Inorg Chem 49:174–187

    Article  CAS  PubMed  Google Scholar 

  31. Jakusch T, Hollender D, Enyedy EA, Sánchez Gonzáles C, Montes-Bayón M, Sanz-Medel A, Costa Pessoa J, Tomaz I, Kiss T (2009) Dalton Trans 2428–2437

  32. Fujisawa Y, Fujimoto S, Sakurai H (1997) J Inorg Biochem 67:396

    Article  CAS  Google Scholar 

  33. Sakurai H, Fujisawa Y, Fujimoto S, Yasui H, Takino T (1999) J Trace Elem Exp Med 12:393–401

    Article  CAS  Google Scholar 

  34. Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM (1999) Br J Pharmacol 126:467–477

    Article  CAS  PubMed  Google Scholar 

  35. Amin SS, Cryer K, Zhang B, Dutta SK, Eaton SS, Anderson OP, Miller SM, Reul BA, Brichard SM, Crans DC (2000) Inorg Chem 39:406–416

    Article  CAS  PubMed  Google Scholar 

  36. Rangel M, Tamura A, Fukushima C, Sakurai H (2001) J Biol Inorg Chem 6:128–132

    Article  CAS  PubMed  Google Scholar 

  37. Kiss T, Jakusch T, Hollender D, Dörnyei A (2007) In: Kustin K, Costa Pessoa J, Crans DC (eds) Vanadium: the versatile metal. ACS symposium series 974. American Chemical Society, Washington, pp 323–339

  38. Kiss T, Jakusch T, Hollender D, Dörnyei A, Enyedy EA, Costa Pessoa J, Sakurai H, Sanz-Medel A (2008) Coord Chem Rev 252:1153–1162

    Google Scholar 

  39. Kiss T, Kiss E, Garribba E, Sakurai H (2000) J Inorg Biochem 80:65–73

    Article  CAS  PubMed  Google Scholar 

  40. Sanna D, Garribba E, Micera G (2009) J Inorg Biochem 103:648–655

    Article  CAS  PubMed  Google Scholar 

  41. Kiss E, Garribba E, Micera G, Kiss T, Sakurai H (2000) J Inorg Biochem 78:97–108

    Article  CAS  PubMed  Google Scholar 

  42. Kiss E, Petrohán K, Sanna D, Garribba E, Micera G, Kiss T (2000) Polyhedron 19:55–61

    Article  CAS  Google Scholar 

  43. Crans DC, Khan AR, Mahroof-Tahir M, Mondal S, Miller SM, la Cour A, Anderson OP, Jakusch T, Kiss T (2001) Dalton Trans 3337–3345

  44. Buglyó P, Kiss T, Sanna D, Garribba E, Micera G (2002) J Chem Soc Dalton Trans 2275–2282

  45. Micera G, Sanna D, Dessì A, Kiss T, Buglyó P (1993) Gazz Chim Ital 123:573–577

    CAS  Google Scholar 

  46. Nagypál I, Fábián I (1982) Inorg Chim Acta 61:109–113

    Article  Google Scholar 

  47. Reynolds JA, Gallagher JP, Steinhardt J (1970) Biochemistry 9:1232–1238

    Article  CAS  PubMed  Google Scholar 

  48. Thompson KH, Battell M, McNeill JH (1998) In: Nriagu JO (ed) Vanadium in the environment, part 2: health effects. Wiley, New York, pp 21–37

  49. Sakurai H, Fugono J, Yasui H (2004) Mini Rev Med Chem 4:41–48

    Article  CAS  PubMed  Google Scholar 

  50. Rehder D, Costa Pessoa J, Geraldes CFGC, Castro MMCA, Kabanos T, Kiss T, Meier B, Micera G, Pettersson L, Rangel M, Salifoglou A, Turel I, Wang D (2002) J Biol Inorg Chem 7:384–396

    Article  CAS  PubMed  Google Scholar 

  51. Bruker Analytische Messtechnik GmbH (1996) WinEPR SimFonia version 1.25 (1996) Bruker Analytische Messtechnik, Karlsruhe

  52. Kiss T, Buglyó P, Sanna D, Micera G, Decock P, Dewaele D (1995) Inorg Chim Acta 239:145–153

    Article  CAS  Google Scholar 

  53. Gran G (1950) Acta Chem Scand 4:559–577

    Article  CAS  Google Scholar 

  54. Irving H, Miles MG, Pettit LD (1967) Anal Chim Acta 38:475–488

    Article  CAS  Google Scholar 

  55. Zékány L, Nagypál I (1985) In: Leggett DJ (ed) Computation methods for the determination of formation constants. Plenum Press, New York, pp 291–353

  56. Henry RP, Mitchell PCH, Prue JE (1973) J Chem Soc Dalton Trans 1156–1159

  57. Davies CW (1938) J Chem Soc 2093–2098

  58. Komura A, Hayashi M, Imanaga H (1977) Bull Chem Soc Jpn 50:2927–2931

    Article  CAS  Google Scholar 

  59. Vilas Boas LF, Costa Pessoa J (1987) In: Wilkinson G, Gillard RD, McCleverty JA (eds) Comprehensive coordination chemistry, vol 3. Pergamon Press, Oxford, pp 453–583

  60. Várnagy K, Sóvágó I, Agoston K, Likó Z, Süli-Vargha H, Sanna D, Micera G (1994) J Chem Soc Dalton Trans 2939–2945

  61. Sanna D, Micera G, Strinna Erre L, Molinu MG, Garribba E (1996) J Chem Res (S) 40–41

  62. Chasteen ND (1981) In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 3. Plenum Press, New York, pp 53–119

  63. Cannon JC, Chasteen ND (1975) Biochemistry 14:4573–4577

    Article  CAS  PubMed  Google Scholar 

  64. White LK, Chasteen ND (1979) J Phys Chem 83:279–284

    Article  CAS  Google Scholar 

  65. Mustafi D, Galtseva EV, Krzystek J, Brunuel LC, Makinen MW (1999) J Phys Chem A 103:11279–11286

    Article  CAS  Google Scholar 

  66. Kiss T, Jakusch T, Bouhsina S, Sakurai H, Enyedy EA (2006) Eur J Inorg Chem 3607–3613

  67. Bordbar AK, Creagh AL, Mohammadi F, Haynes CA, Orvig C (2009) J Inorg Biochem 103:643–647

    Article  CAS  PubMed  Google Scholar 

  68. Campbell RF, Chasteen ND (1977) J Biol Chem 252:5996–6001

    CAS  PubMed  Google Scholar 

  69. Sun H, Cox MC, Li H, Sadler PJ (1997) Struct Bond 88:71–102

    Google Scholar 

  70. Chasteen ND, Francavilla J (1976) J Phys Chem 80:867–871

    Article  CAS  Google Scholar 

  71. Harford C, Sarkar B (1997) Acc Chem Res 30:123–130

    Article  CAS  Google Scholar 

  72. Kubal G, Sadler PJ, Tucker A (1994) Eur J Biochem 220:781–787

    Article  CAS  PubMed  Google Scholar 

  73. Hu W, Luo Q, Ma X, Wu K, Liu J, Chen Y, Xiong S, Wang J, Sadler PJ, Wang F (2009) Chem Eur J 15:6586–6594

    Article  CAS  Google Scholar 

  74. Garribba E, Micera G, Panzanelli A, Sanna D (2003) Inorg Chem 42:3981–3987

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Garribba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanna, D., Buglyó, P., Micera, G. et al. A quantitative study of the biotransformation of insulin-enhancing VO2+ compounds. J Biol Inorg Chem 15, 825–839 (2010). https://doi.org/10.1007/s00775-010-0647-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0647-9

Keywords

Navigation