Skip to main content
Log in

Binding of chromium(VI) to histones: implications for chromium(VI)-induced genotoxicity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The first evidence has been obtained for Cr(VI) (chromate) binding to isolated calf thymus (CT) histones under physiological conditions (pH 7.4, Cl concentration 152 mM, 310 K). No significant Cr(VI) binding under the same conditions was observed for other extracellular and intracellular proteins, including albumin, apo-transferrin and G-actin, as well as for CT DNA. The mode of Cr(VI) binding to histones was studied by vibrational, electronic and X-ray absorption (X-ray absorption near-edge structure and X-ray absorption fine structure) spectroscopies and molecular mechanics calculations. A proposed binding mechanism includes electrostatic interactions of CrO4 2− with protonated Lys and Arg residues of histones, as well as the formation of hydrogen bonds with the protein backbone. Similarly, Cr(VI) can bind to nuclear localization signals (typically, Lys- and Arg-rich fragments) of other nuclear proteins. Selective binding of Cr(VI) to newly synthesized nuclear proteins (including histones) in the cytoplasm is likely to be responsible for the active transport of Cr(VI) into the nuclei of living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANBF:

Australian National Beamline Facility

ATR:

Attenuated total reflectance

BSA:

Bovine serum albumin

CT:

Calf thymus

FT:

Fourier transform

GFAAS:

Graphite furnace atomic absorption spectroscopy

HBS:

HEPES-buffered saline

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

MM:

Molecular mechanics

MS:

Multiple scattering

XAFS:

X-ray absorption fine structure

XANES:

X-ray absorption near-edge structure

XAS:

X-ray absorption spectroscopy

References

  1. International Agency for Research on Cancer (2003) Overall evaluations of carcinogenicity to humans. Lyon, France. http://www.iarc.fr

  2. Connett P, Wetterhahn KE (1983) Struct Bonding (Berlin) 54:93–124

    CAS  Google Scholar 

  3. Levina A, Codd R, Dillon CT, Lay PA (2003) Prog Inorg Chem 51:145–240

    Article  CAS  Google Scholar 

  4. O’Brien TJ, Ceryak S, Patierno SR (2003) Mutat Res 533:3–36

    PubMed  CAS  Google Scholar 

  5. Wei Y-D, Tepperman K, Huang M, Sartor MA, Puga A (2004) J Biol Chem 279:4110–4119

    Article  PubMed  CAS  Google Scholar 

  6. Sugden KD, Stearns DM (2000) J Environ Pathol Toxicol Oncol 19:215–230

    PubMed  CAS  Google Scholar 

  7. Ha L, Ceryak S, Patierno SR (2004) Carcinogenesis 25:2265–2274

    Article  PubMed  CAS  Google Scholar 

  8. Sehlmeyer U, Hechtenberg S, Klyszcz H, Beyersmann D (1990) Arch Toxicol 64:506–508

    Article  PubMed  CAS  Google Scholar 

  9. Dillon CT, Lay PA, Kennedy BJ, Stampfl APJ, Cai Z, Ilinski P, Rodrigues W, Legnini D, Lai B, Maser J (2002) J Biol Inorg Chem 7:640–645

    Article  PubMed  CAS  Google Scholar 

  10. Harris HH, Levina A, Dillon CT, Mulyani I, Lai B, Cai Z, Lay PA (2005) J Biol Inorg Chem 10:105–118

    Article  PubMed  CAS  Google Scholar 

  11. Dillon CT, Lay PA, Cholewa M, Legge GJF, Bonin AM, Collins TJ, Kostka KL, Shea-McCarthy G (1997) Chem Res Toxicol 10:533–535

    Article  PubMed  CAS  Google Scholar 

  12. Köster A, Beyersmann D (1985) Toxicol Environ Chem 10:307–313

    Article  Google Scholar 

  13. Krebber H, Silver PA (2000) Methods Enzymol 327:283–296

    PubMed  CAS  Google Scholar 

  14. Wollfe S (1992) Chromatin: structure and function. Academic, London

    Google Scholar 

  15. Levina A, Bailey AM, Champion G, Lay PA (2000) J Am Chem Soc 122:6208–6216

    Article  CAS  Google Scholar 

  16. Sugden KD, Wetterhahn KE (1997) Chem Res Toxicol 10:1397–1406

    Article  PubMed  CAS  Google Scholar 

  17. Sarabia V, Ramlal T, Klip A (1989) Biochem Cell Biol 68:536–542

    Article  Google Scholar 

  18. Levina A, Codd R, Foran GJ, Hambley TW, Maschmeyer T, Masters AF, Lay PA (2004) Inorg Chem 43:1046–1055

    Article  PubMed  CAS  Google Scholar 

  19. Levina A, Lay PA (2004) Inorg Chem 43:324–335

    Article  PubMed  CAS  Google Scholar 

  20. Ellis PJ, Freeman HC (1995) J Synchrotron Rad 2:190–195

    Article  CAS  Google Scholar 

  21. Australian Synchrotron Research Program (1996) XFIT for windows. Sydney, Australia. http://www.ansto.gov.au/natfac/ANBF/xfit.html

  22. Levina A, Armstrong RS, Lay PA (2005) Coord Chem Rev 249:141–160

    Article  CAS  Google Scholar 

  23. Accelrys Software Inc (2004) Discover software for molecular modelling. San Diego. http://www.accelrys.com/insight/discover.html

  24. Ruben H, Olovsson I, Zalkin A, Templeton D. H. (1975) Acta Crystallogr B 29:2963–2964

    Article  Google Scholar 

  25. Cygler M, Grabowski MJ, Stepien A, Wajsman E (1976) Acta Crystallogr B 72:2391–2395

    Article  Google Scholar 

  26. Hoffman MM, Darab JG, Fulton JL (2001) J Phys Chem A 105:1772–1782

    Article  CAS  Google Scholar 

  27. Bajt S, Clark SB, Sutton R, Rivers ML, Smith JV (1993) Anal Chem 65:1800–1804

    Article  CAS  Google Scholar 

  28. Pandya KI (1994) Phys Rev B 50:15509–15518

    Article  CAS  Google Scholar 

  29. Panagiotopoulos NC, Brown ID (1972) Acta Crystallogr B 28:1352–1357

    Article  CAS  Google Scholar 

  30. Binsted N, Strange RW, Hasnain SS (1992) Biochemistry 31:12117–12125

    Article  PubMed  CAS  Google Scholar 

  31. Sheterline P, Clayton J, Sparrow JC (1996) Actins, 3rd edn. Academic, London

    Google Scholar 

  32. Ediz O, Tabakci M, Memon S, Yilmaz M, Roundhill DM (2004) Supramol Chem 16:199–204

    Article  CAS  Google Scholar 

  33. Toal SJ, Jones KA, Magde D, Trogler WC (2005) J Am Chem Soc 127:11661–11665

    Article  PubMed  CAS  Google Scholar 

  34. De Petrocellis L, Quagliarotti G, Tomei L, Geraci G (1986) Eur J Biochem 156:143–148

    Article  PubMed  Google Scholar 

  35. Vu HM, Minch MJ (1998) J Pept Res 51:162–170

    Article  PubMed  CAS  Google Scholar 

  36. Harp JM, Hanson BL, Timm DE, Bunick GJ (2000) Acta Crystallogr D 56:1513–1534

    Article  PubMed  CAS  Google Scholar 

  37. de Nooij E, Westenbrink HG (1962) Biochim Biophys Acta 62:608–609

    Article  PubMed  CAS  Google Scholar 

  38. Sullivan S, Sink DW, Trout KL, Makalowska I, Taylor PM, Baxevanis AD, Landsman D (2002) Nucleic Acids Res 30:341–342

    Article  PubMed  CAS  Google Scholar 

  39. National Human Genome Research Institute (2004) Histone sequence database. http://www.research.nhgri.nih.gov/histones/

  40. Bäuerle M, Doenecke D, Albig W (2002) J Biol Chem 277:32480–32489

    Article  PubMed  Google Scholar 

  41. Pollack GH (2003) Adv Colloid Interface Sci 103:173–196

    Article  PubMed  CAS  Google Scholar 

  42. Brasch NE, Buckingham DA, Evans AB, Clark CR (1996) J Am Chem Soc 118:7969–7980

    Article  CAS  Google Scholar 

  43. Costa M (1991) Environ Health Perspect 92:45–52

    Article  PubMed  CAS  Google Scholar 

  44. Singh J, Bridgewater LC, Patierno S (1998) Toxicol Sci 45:72–76

    Article  PubMed  CAS  Google Scholar 

  45. Mulyani I, Levina A, Lay PA (2004) Angew Chem Int Ed Engl 43:4504–4507

    Article  PubMed  CAS  Google Scholar 

  46. Levina A, Lay PA (2005) Coord Chem Rev 249:281–298

    Article  CAS  Google Scholar 

  47. Bussière G, Beaulac R, Cardinal-David B, Reber C (2001) Coord Chem Rev 219:509–543

    Article  Google Scholar 

  48. Kortenkamp A, O’Brien P, Beyersmann D (1991) Carcinogenesis 12:1143–1144

    Article  PubMed  CAS  Google Scholar 

  49. Miller CA, Cohen MD, Costa M (1991) Carcinogenesis 12:269–276

    Article  PubMed  CAS  Google Scholar 

  50. Mattagajasingh SN, Misra HP (1996) J Biol Chem 271:33550–33560

    Article  PubMed  CAS  Google Scholar 

  51. Codd R, Dillon CT, Levina A, Lay PA (2001) Coord Chem Rev 216–217:533–577

    Google Scholar 

Download references

Acknowledgements

Financial support of this work was provided by an Australian Research Council Discovery grant and an Australian Research Council Australian Professorial Fellowship to P.A.L., by the Australian Synchrotron Research Program grant for the access to the ANBF facility and by an Australian Synchrotron Research Program Postdoctoral Fellowship to H.H.H. ASRP is funded by the Commonwealth of Australia under the Major National Research Facilities Program. We thank Garry Foran (ANBF) and Anne Rich (University of Sydney) for the assistance with data collection at ANBF, and Elizabeth Carter (University of Sydney) for the assistance with the solid-state electronic and FTIR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Lay.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levina, A., Harris, H.H. & Lay, P.A. Binding of chromium(VI) to histones: implications for chromium(VI)-induced genotoxicity. J Biol Inorg Chem 11, 225–234 (2006). https://doi.org/10.1007/s00775-005-0068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0068-3

Keywords

Navigation