Skip to main content
Log in

Dinuclear platinum complexes with N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones as linking ligands. Part I. Synthesis, cytotoxicity, and cellular studies in A2780 human ovarian carcinoma cells

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones (aminoalkyl=2-aminoethyl, 3-aminoprop-1-yl and 4-aminobut-1-yl) was functionalized with trans-platinum DNA-binding moieties. Cytotoxicity testing in A2780 human ovarian carcinoma cells revealed high anticancer activity of the formed cationic dinuclear platinum complexes. The cationic dinuclear platinum complexes with the shortest aminoalkyl chain were shown to be the most active, which agrees with the structure–activity relationship found for the corresponding free ligands without platinum. The N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones partly circumvent cisplatin resistance, whereas their dinuclear platinum complexes were found susceptible to the resistance mechanisms in A2780cisR. The platinum complexes have resistance factors comparable to the control dinuclear complex BBR3005 [{trans-PtCl(NH3)2}2{μ-(NH2(CH2)6NH2)}](NO3)2. The 1,4-diaminoanthraquinone moiety is fluorescent, and thus the cellular processing of the compounds could be monitored by time-lapse digital fluorescence microscopy. The intercalators without platinum were shown to enter the cells within minutes. The platinum complexes enter the cells more slowly. Most likely, the positive charges of the platinum complexes hamper the diffusion through the membrane. Interestingly, the platinum complexes are processed differently than the platinum-free compounds by the cells. After 24 hours the fluorescent platinum complexes are encapsulated in large vesicles in the cytosol. Co-localization of the anthraquinone fluorescence with Lysotracker Green DND-26 shows that these vesicles are acidic compartments, probably lysosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8 A–D

Similar content being viewed by others

Abbreviations

AQ2:

N,N′-bis(2-aminoethyl)-1,4-diaminoanthracene-9,10-dione

AQ3:

N,N′-bis(3-aminoprop-1-yl)-1,4-diaminoanthracene-9,10-dione

AQ4:

N,N′-bis(4-aminobut-1-yl)-1,4-diaminoanthracene-9,10-dione

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide

PAQ2:

[{trans-PtCl(NH3)2}2(μ-AQ2)](NO3)2

PAQ3:

[{trans-PtCl(NH3)2}2(μ-AQ3)](NO3)2

PAQ4:

[{trans-PtCl(NH3)2}2(μ-AQ4)](NO3)2

PBS:

phosphate buffered saline

References

  1. Hambley TW (1997) Coord Chem Rev 166:181–223

    CAS  Google Scholar 

  2. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    PubMed  Google Scholar 

  3. Farrell N, Qu Y, Bierbach U, Valsecchi M, Menta E (1999) Cisplatin, chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim, pp 479–496

  4. Farrell N (1999) J Inorg Biochem 74:23–23

    Google Scholar 

  5. Reedijk J (2003) Proc Natl Acad Sci USA 100:3611–3616

    Article  CAS  PubMed  Google Scholar 

  6. Di Blasi P, Bernareggi A, Beggiolin G, Piazzoni L, Menta E, Formento ML (1998) Anticancer Res 18:3113–3117

    PubMed  Google Scholar 

  7. Pratesi G, Perego P, Polizzi D, Righetti SC, Supino R, Caserini C, Manzotti C, Giuliani FC, Pezzoni G, Tognella S, Spinelli S, Farrell N, Zunino F (1999) Br J Cancer 80:1912–1919

    Article  CAS  PubMed  Google Scholar 

  8. Roberts JD, Peroutka J, Farrell N (1999) J Inorg Biochem 77:51–57

    CAS  PubMed  Google Scholar 

  9. Roberts JD, Beggiolin G, Manzotti C, Piazzoni L, Farrell N (1999) J Inorg Biochem 77:47–50

    CAS  PubMed  Google Scholar 

  10. Manzotti C, Pratesi G, Menta E, Di Domenico R, Cavalletti E, Fiebig HH, Kelland LR, Farrell N, Polizzi D, Supino R, Pezzoni G, Zunino F (2000) Clin Cancer Res 6:2626–2634

    CAS  PubMed  Google Scholar 

  11. Komeda S, Lutz M, Spek AL, Chikuma M, Reedijk J (2000) Inorg Chem 39:4230–4236

    Article  CAS  PubMed  Google Scholar 

  12. Qu Y, Rauter H, Fontes APS, Bandarage R, Kelland LR, Farrell N (2000) J Med Chem 43:3189–3192

    CAS  PubMed  Google Scholar 

  13. Perego P, Gatti L, Caserini C, Supino R, Colangelo D, Leone R, Spinelli S, Farrell N, Zunino F (1999) J Inorg Biochem 77:59–64

    Google Scholar 

  14. Perego P, Caserini C, Gatti L, Carenini N, Romanelli S, Supino R, Colangelo D, Viano I, Leone R, Spinelli S, Pezzoni G, Manzotti C, Farrell N, Zunino F (1999) Mol Pharmacol 55:1108–1108

    Google Scholar 

  15. Jansen BAJ, van der Zwan J, den Dulk H, Brouwer J, Reedijk J (2001) J Med Chem 44:245–249

    Article  CAS  PubMed  Google Scholar 

  16. Rauter H, Di Domenico R, Menta E, Oliva A, Qu Y, Farrell N (1997) Inorg Chem 36:3919–3927

    Article  CAS  Google Scholar 

  17. Cox JW, Berners-Price S, Davies MS, Qu Y, Farrell N (2001) J Am Chem Soc 123:1316–1326

    CAS  PubMed  Google Scholar 

  18. Zee-Cheng RK-Y, Podrebarac EG, Menon CS, Cheng CC (1979) J Med Chem 22:501–505

    CAS  PubMed  Google Scholar 

  19. Krapcho AP, Getahun Z, Avery KL, Vargas KJ, Hacker MP, Spinelli S, Pezzoni G, Manzotti C (1991) J Med Chem 34:2373–2380

    CAS  PubMed  Google Scholar 

  20. Gibson D, Binyamin I, Haj M, Ringel I, Ramu A, Katzhendler J (1997) Eur J Med Chem 32:823–831

    Article  CAS  Google Scholar 

  21. Gibson D, Mansur N, Gean KF (1995) J Inorg Biochem 58:79–88

    Article  CAS  PubMed  Google Scholar 

  22. Gibson D, Gean KF, Benshoshan R, Ramu A, Ringel I, Katzhendler J (1991) J Med Chem 34:414–420

    CAS  PubMed  Google Scholar 

  23. Kitov S, Benshoshan R, Ringel I, Gibson D, Katzhendler J (1988) Eur J Med Chem 23:381–383

    CAS  Google Scholar 

  24. Gean KF, Benshoshan R, Ramu A, Ringel I, Katzhendler J, Gibson D (1991) Eur J Med Chem 26:593–598

    CAS  Google Scholar 

  25. Mikata Y, Yokoyama M, Mogami K, Kato M, Okura I, Chikira M, Yano S (1998) Inorg Chim Acta 279:51–57

    Article  CAS  Google Scholar 

  26. Mikata Y, Mogami K, Kato M, Okura I, Yano SB (1997) Bioorg Med Chem Lett 7:1083–1086

    Article  CAS  Google Scholar 

  27. Ceci E, Cini R, Karaulov A, Hursthouse MB, Maresca L, Natile G (1993) J Chem Soc Dalton Trans 2491–2497

  28. Cullinane C, Wickham G, McFadyen WD, Denny WA, Palmer BD, Phillips DR (1993) Nucleic Acids Res 21:393–400

    CAS  PubMed  Google Scholar 

  29. Goodgame DML, Page CJ, Stratford IJ (1991) Transition Met Chem 16:223–229

    CAS  Google Scholar 

  30. Bowler BE, Ahmed KJ, Sundquist WI, Hollis LS, Whang EE, Lippard SJ (1989) J Am Chem Soc 111:1299–1306

    CAS  Google Scholar 

  31. Murray V, Motyka H, England PR, Wickham G, Lee HH, Denny WA, McFadyen WD (1992) J Biol Chem 267:18805–18809

    CAS  PubMed  Google Scholar 

  32. Temple MD, McFadyen WD, Holmes RJ, Denny WA, Murray V (2000) Biochemistry 39:5593–5599

    Article  CAS  PubMed  Google Scholar 

  33. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  CAS  PubMed  Google Scholar 

  34. Smith PJ, Desnoyers R, Blunt N, Giles Y, Patterson LH, Watson JV (1997) Cytometry 27:43–53

    Article  CAS  PubMed  Google Scholar 

  35. Molenaar C, Teuben JM, Heetebrij RJ, Tanke HJ, Reedijk J (2000) J Biol Inorg Chem 5:655–665

    Article  CAS  PubMed  Google Scholar 

  36. Qu Y, Farrell N (1992) Inorg Chem 31:930–932

    CAS  Google Scholar 

  37. Jansen BAJ, van der Zwan J, Reedijk J, den Dulk H, Brouwer J (1999) Eur J Inorg Chem 1429–1433

  38. Kaufman EB, Cowan DO (1968) Inorg Synth 7:242–245

    Google Scholar 

  39. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Cancer Res 48:589–601

    CAS  PubMed  Google Scholar 

  40. Krapcho AP, Getahun Z, Avery KJ (1990) Synth Commun 20:2139–2146

    CAS  Google Scholar 

  41. Zhen WP, Link CJ, O’Connor PM, Reed E, Parker R, Howell SB, Bohr VA (1992) Mol Cell Biol 12:3689–3698

    CAS  Google Scholar 

  42. Kelland LR, Barnard CFJ, Mellish KJ, Jones M, Goddard PM, Valenti M, Bryant A, Murrer BA, Harrap KR (1994) Cancer Res 54:5618–5622

    CAS  PubMed  Google Scholar 

  43. Holford J, Sharp SY, Murrer BA, Abrams M, Kelland LR (1998) Br J Cancer 77:366–373

    CAS  PubMed  Google Scholar 

  44. Kelland LR, Barnard CFJ, Evans IG, Murrer BA, Theobald BRC, Wyer SB, Goddard PM, Jones M, Valenti M, Bryant A, Rogers PM, Harrap KR (1995) J Med Chem 38:3016–3024

    CAS  PubMed  Google Scholar 

  45. Kalayda GV, Jansen BAJ, Wielaard P, Molenaar C, Tanke HJ, Reedijk J (2004) J Biol Inorg Chem 9:(accompanying paper)

  46. Huxham IM, Barlow AL, Lewis AD, Plumb J, Mairs RJ, Gaze MN, Workman P (1994) Int J Cancer 59:94–102

    CAS  PubMed  Google Scholar 

  47. Arancia G, Calcabrini A, Meschini S, Molinari A (1998) Cytotechnology 27:95–111

    Article  CAS  Google Scholar 

  48. Bour-Dill C, Gramain MP, Merlin JL, Marchal S, Guillemin F (2000) Cytometry 39:16–25

    Article  CAS  PubMed  Google Scholar 

  49. Beyer U, Rothen-Rutishauser B, Unger C, Wunderli-Allenspach H, Kratz F (2001) Pharm Res 18:29–38

    Article  CAS  PubMed  Google Scholar 

  50. Racoosin EL, Swanson JA (1993) J Cell Biol 121:1011–1020

    CAS  PubMed  Google Scholar 

  51. Kim JH, Lingwood CA, Williams DB, Furuya W, Manolson MF, Grinstein S (1996) J Cell Biol 134:1387–1399

    CAS  PubMed  Google Scholar 

  52. Jansen BAJ, Brouwer J, Reedijk J (2002) J Inorg Biochem 89:197–202

    Article  CAS  PubMed  Google Scholar 

  53. Aggarwal SK (1993) J Histochem Cytochem 41:1053–1073

    CAS  PubMed  Google Scholar 

  54. Litterst CL (1984) Agents Actions 15:520–524

    CAS  PubMed  Google Scholar 

  55. Dietel M (1991) Pathol Res Pract 187:892–905

    CAS  PubMed  Google Scholar 

  56. Edwards PG, Kendall MD, Morris IW (1991) Scanning Microsc 5:797–810

    CAS  PubMed  Google Scholar 

  57. Cece R, Petruccioli MG, Cavaletti G, Barajon I, Tredici G (1995) Histol Histopathol 10:837–845

    CAS  Google Scholar 

  58. Muenchen HJ, Aggarwal SK (1998) Anticancer Res 18:2631–2636

    CAS  PubMed  Google Scholar 

  59. Berners-Price SJ, Kuchel PW (1990) J Inorg Biochem 38:305–326

    Article  CAS  Google Scholar 

  60. Reedijk J (1999) Chem Rev 99:2499–2510

    PubMed  Google Scholar 

  61. Oehlsen ME, Qu Y, Farrell N (2003) Inorg Chem 42:5498–5506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the EU for a grant as a Training Host Institute in the EU programme Human Capital and Mobility. Also support and sponsorship by COST Actions D20/0001/00, D20/0002/00 and D20/003/01 (biocoordination chemistry) is kindly acknowledged. The authors wish to thank Johnson Matthey (Reading, UK) for their generous gift of K2PtCl4. This work has been performed under auspices of the joint BIOMAC Research Graduate School of Leiden University and Delft University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Reedijk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, B.A.J., Wielaard, P., Kalayda, G.V. et al. Dinuclear platinum complexes with N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones as linking ligands. Part I. Synthesis, cytotoxicity, and cellular studies in A2780 human ovarian carcinoma cells. J Biol Inorg Chem 9, 403–413 (2004). https://doi.org/10.1007/s00775-004-0539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0539-y

Keywords

Navigation