Skip to main content
Log in

Reduced hybrid cluster proteins (HCP) from Desulfovibrio desulfuricans ATCC 27774 and Desulfovibrio vulgaris (Hildenborough): X-ray structures at high resolution using synchrotron radiation

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The hybrid cluster proteins from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774 (Dd) and Desulfovibrio vulgaris strain Hildenborough (Dv) have been isolated and crystallized anaerobically. In each case, the protein has been reduced with dithionite and the crystal structure of the reduced form elucidated using X-ray synchrotron radiation techniques at 1.25 Å and 1.55 Å resolution for Dd and Dv, respectively. Although the overall structures of the proteins are unchanged upon reduction, there are significant changes at the hybrid cluster centres. These include significant movements in the position of the iron atom linked to the persulfide moiety in the oxidized as-isolated proteins and the sulfur atom of the persulfide itself. The nature of these changes is described and the implications with respect to the function of hybrid cluster proteins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a
Fig. 2. a
Fig. 3a, b.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

Dd :

Desulfovibrio desulfuricans ATCC 27774

Dv :

Desulfovibrio vulgaris strain Hildenborough

DTN:

dithionite anion, S2O42−

GOL:

1,2,3-trihydroxypropane (glycerol)

HCP:

hybrid cluster protein, formerly known as prismane

MES:

2-(N-morpholino)ethanesulfonic acid

PEG:

poly(ethylene glycol)

References

  1. van den Berg WAM, Hagen WR, van Dongen WMAM (2000) Eur J Biochem 267:666–676

    Article  Google Scholar 

  2. Beliaev AS, Thompson DK, Khare T, Lim H, Brandt CC, Li G, Murray AE, Heidelberg JF, Giometti CS, Yates J III, Nealson KH, Tiedje JM, Zhou J (2002) J Integrative Biol 6: 39–60

    CAS  Google Scholar 

  3. Wolfe MT, Heo J, Garavelli JS, Ludden PW (2002) J Bacteriol 184:5898–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Briolat V, Reysset G (2002) J Bacteriol 184:2333–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Science 293:1281–1285

    Article  CAS  PubMed  Google Scholar 

  6. Arendsen AF, Hadden J, Card G, McAlpine AS, Bailey S, Zaitsev V, Duke EHM, Lindley PF, Kröckel M, Trautwein AX, Feiters MC, Charnock JM, Garner CD, Marritt SJ, Thomson AJ, Kooter IM, Johnson MK, van den Berg WAM, van Dongen WMAM, Hagen WR (1998) J Biol Inorg Chem 3:81–95

    Article  CAS  Google Scholar 

  7. Cooper SJ, Garner CD, Hagen WR, Lindley PF, Bailey S (2000) Biochemistry 39:15044–15054

    Article  CAS  PubMed  Google Scholar 

  8. Macedo S, Mitchell EP, Romão CV, Cooper SJ, Coelho R, Liu MY, Xavier AV, LeGall J, Bailey S, Garner CD, Hagen WR, Teixeira M, Carrondo MA, Lindley PF (2002) J Biol Inorg Chem 7:514–525

    Article  CAS  PubMed  Google Scholar 

  9. Stokkermans JPWG, Pierik AJ, Wolbert RBG, Hagen WR, van Dongen WMAM, Veeger C (1992) Eur J Biochem 208:435–442

    Article  CAS  PubMed  Google Scholar 

  10. Bourgeois D, Vernede X, Adam V, Fioravanti E, Ursby T (2002) J Appl Crystallogr 35:319–326

    Article  CAS  Google Scholar 

  11. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    Article  CAS  PubMed  Google Scholar 

  12. Collaborative Computational Project Number 4 (1994) Acta Crystallogr Sect D 50:760–763

    Article  Google Scholar 

  13. Matthews BW (1968) J Mol Biol 33:491–497

    Article  CAS  PubMed  Google Scholar 

  14. Foadi J, Woolfson MM, Dodson EJ, Wilson KS, Jia-xing Y, Chao-de Z (2000) Acta Crystallogr Sect D 56:1137–1147

    Article  CAS  Google Scholar 

  15. Perrakis A, Harkiolaki M, Wilson KS, Lamzin VS (2001) Acta Crystallogr Sect D 57:1445–1450

    Article  CAS  Google Scholar 

  16. Lamzin VS, Perrakis A, Wilson KS (1999) In: Rossmann M, Arnold E (eds) International tables for crystallography; crystallography of biological macromolecules. Kluwer, Dordrecht, pp 720–722

  17. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr Sect D 53:240–255

    Article  CAS  Google Scholar 

  18. Tronrud D (1996) In: Dodson E, Moore M, Ralph A, Bailey S (eds) Macromolecular refinement. Proceedings of CCP4 study weekend. Daresbury Laboratory, Warrington, UK, pp 1–10

  19. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr Sect A 47:110–119

    Article  Google Scholar 

  20. Read RJ (1986) Acta Crystallogr Sect A 42:140–149

    Article  Google Scholar 

  21. McRee DE (1992) J Mol Graph Model 10:44–46

    Article  Google Scholar 

  22. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  23. Ramakrishnan C, Ramachandran GN (1965) Biophys J 5:909–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Greenwood NN, Earnshaw A (1994) Chemistry of the elements, 2nd edn. Pergamon, Oxford, pp 494–496

  26. Bamford VA, Angove HC, Seward HE, Thomson AJ, Cole JA, Butt JN, Hemmings AM, Richardson DJ (2002) Biochemistry 41:2921–2931

    Article  CAS  PubMed  Google Scholar 

  27. Krueger RJ, Siegel LM (1982) Biochemistry 21:2892–2904

    Article  CAS  PubMed  Google Scholar 

  28. Siegel LM, Rueger DC, Barber MJ, Krueger RJ, Orme-Johnson NR, Orme-Johnson WH (1982) J Biol Chem 257:6343–6350

    CAS  PubMed  Google Scholar 

  29. Kraulis PJ (1999) J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  30. Esnouf RM (1999) Acta Crystallogr Sect D 55:938–940

    Article  CAS  Google Scholar 

  31. Merritt EA, Bacon DJ (1997) Methods Enzymol 277:505–524

    Article  CAS  PubMed  Google Scholar 

  32. Cruickshank DWJ (1996) In: Dodson E, Moore M, Ralph A, Bailey S (eds) Macromolecular refinement. Proceedings of the CCP4 study weekend. Daresbury Laboratory, Warrington, UK, pp 11–22

  33. Cruickshank DWJ (1998) Acta Crystallogr Sect D 55:583–601

    Article  Google Scholar 

Download references

Acknowledgements

We thank the European Synchrotron Radiation Facility, Grenoble, France, and the staff of the Macromolecular Crystallography Group for the provision of synchrotron radiation facilities, without which the high-resolution studies would not have been possible. The ESRF also provided a PhD studentship for S.M. and kindly provided partial support for D.G.A. D.G.A. also acknowledges a grant from Fundação para a Ciência e Tecnologia (FCT), SFRH (BD/6480/2001). C.V.R. acknowledges a grant from Praxis XXI (BD/19879/99). P.F.L. would like to acknowledge the assistance and cooperation of the Department of Crystallography, Birkbeck College, University of London, UK. This work was partially funded by FCT, SAPIENS (POCTI/BME/38859/2001). The authors would also like to thank to Dora Alves for her valuable help on some aspects of Dv protein purification. Figures 1 to 4 were produced with the help of the programs Molscript 28, Bobscript 29and Raster 3D 30

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lindley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragão, D., Macedo, S., Mitchell, E.P. et al. Reduced hybrid cluster proteins (HCP) from Desulfovibrio desulfuricans ATCC 27774 and Desulfovibrio vulgaris (Hildenborough): X-ray structures at high resolution using synchrotron radiation. J Biol Inorg Chem 8, 540–548 (2003). https://doi.org/10.1007/s00775-003-0443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0443-x

Keywords

Navigation