Skip to main content
Log in

The polyamine transport system as a target for anticancer drug development

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The vast majority of anticancer drugs in clinical use are limited by systemic host toxicity due to their non-specific side effects. These shortcomings have led to the development of tumour specific drugs which target a single-deregulated pathway or over expressed receptor in cancer cells. Whilst this approach has achieved clinical success, we have also learnt that targeting a single entity in cancer is rarely curative due to the large number of deregulated pathways, receptors and kinases which are also present, in addition to the target. An attractive alternative to improve targeting would be to harness the already established activity of known anticancer drugs by attaching them to a molecule that is transported into cancer cells via a selective transport system. One possibility for this approach is the polyamine pathway. This review provides a brief overview of the polyamine pathway and how, over the years, it has proved an exciting target for the development of novel anticancer agents. However, the focus of this article will be on the properties of the polyamine transport system and how these features could potentially be exploited to develop a novel and selective anticancer drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DFMO:

α-Difluoromethylornithine

DNA:

Deoxyribonucleic acid

GI:

Gastrointestinal

ODC:

Ornithine decarboxylase

PTS:

Polyamine transport system

References

  • Bachrach U, Seiler N (1981) Formation of acetyl polyamines and putrescine from spermidine by normal and transformed chick embryo fibroblasts. Cancer Res 41:1205–1208

    CAS  PubMed  Google Scholar 

  • Barret J, Kruczynski A, Vispe S, Annereau J, Brel V, Guminski Y, Delcros JG, Lansiaux A, Guilbaud N, Imbert T, Bailly C (2008) F14512, a potent antitumor agent targeting topoisomerase II vectored into cancer cells via the polyamine transport system. Cancer Res 68:9845–9853. doi:10.1158/0008-5472.CAN-08-2748

    Article  CAS  PubMed  Google Scholar 

  • Belting M, Persson S, Fransson LA (1999) Proteoglycan involvement in polyamine uptake. Biochem J 338:317–323

    Article  CAS  PubMed  Google Scholar 

  • Belting M, Mani K, Jonsson M, Cheng F, Sandgren S, Jonsson S, Ding K, Delcros JG, Fransson L (2003) Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivotal role for nitrosothiol-derived nitric oxide. J Biol Chem 278:47181–47189

    Article  CAS  PubMed  Google Scholar 

  • Casero RA, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    Article  CAS  PubMed  Google Scholar 

  • Chari RVJ (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107

    Article  CAS  PubMed  Google Scholar 

  • Cipolla B, Bansard JY, Moulinoux JP (2006) MP-22.06: phase I study of a novel polyamine free formula as nutrition therapy of metastatic hormone-refractory prostate cancer (HRPC) patients. Urology 68:196–197

    Google Scholar 

  • Creaven PJ, Perez R, Pendyala L, Meropol NJ, Loewen G, Levine E, Berghorn E, Raghavan D (1997) Unusual central nervous system toxicity in a phase I study of N1N11 diethylnorspermine in patients with advanced malignancy. Investig New Drugs 15:227–234

    Article  CAS  Google Scholar 

  • Cullis PM, Green RE, Merson-Davies L, Travis N (1999) Probing the mechanism of transport and compartmentalisation of polyamines in mammalian cells. Chem Biol 6:717–729

    Article  CAS  PubMed  Google Scholar 

  • Dallavalle S, Giannini G, Alloatti D, Casati A, Marastoni E, Musso L, Merlini L, Morini G, Penco S, Pisano C, Tinelli S, De Cesare M, Beretta GL, Zunino F (2006) Synthesis and cytotoxic activity of polyamine analogues of camptothecin. J Med Chem 49:5177–5186

    Article  CAS  PubMed  Google Scholar 

  • Delcros JG, Tomasi S, Carrington S, Martin B, Renault J, Blagbrough IS, Uriac P (2002) Effect of spermine conjugation on the cytotoxicity and cellular transport of acridine. J Med Chem 45:5098–5111

    Article  CAS  PubMed  Google Scholar 

  • Eiseman JL, Rogers FA, Guo Y, Kauffman J, Sentz DL, Klinger MF, Callery PS, Kyprianou N (1998) Tumor-targeted apoptosis by a novel spermine analogue, 1,12-diaziridinyl-4,9-diazadodecane, results in therapeutic efficacy and enhanced radiosensitivity of human prostate cancer. Cancer Res 58:4864–4870

    CAS  PubMed  Google Scholar 

  • Eliassen KA, Reistad R, Risøen U, Rønning HF (2002) Dietary polyamines. Food Chem 78:273–280

    Article  CAS  Google Scholar 

  • Esteves-Souza A, Lucio KA, Da Cunha AS, Da Cunha Pinto A, Da Silva Lima EL, Camara CA, Vargas MD, Gattass CR (2008) Antitumoral activity of new polyamine-naphthoquinone conjugates. Oncol Rep 20:225–231

    CAS  PubMed  Google Scholar 

  • Gardner RA, Delcros JG, Konate F, Breitbeil F, Martin B, Sigman M, Huang M, Phanstiel O (2004) N1-substituent effects in the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem 47:6055–6069

    Article  CAS  PubMed  Google Scholar 

  • Ghani RA, Palmer AJ, Kaur N, Phanstiel O, Wallace HM (2009) The polyamine transport system: a means of selective delivery of potentially toxic agents to cancer cells? Toxicology 262:13. doi:10.1016/j.tox.2009.04.012

    Article  Google Scholar 

  • Holley J, Mather A, Cullis P, Symons MR, Wardman P, Watt RA, Cohen GM (1992a) Uptake and cytotoxicity of novel nitroimidazole-polyamine conjugates in Ehrlich ascites tumour cells. Biochem Pharmacol 43:763–769

    Article  CAS  PubMed  Google Scholar 

  • Holley JL, Mather A, Wheelhouse RT, Cullis PM, Hartley JA, Bingham JP, Cohen GM (1992b) Targeting of tumor cells and DNA by a chlorambucil-spermidine conjugate. Cancer Res 52:4190–4195

    CAS  PubMed  Google Scholar 

  • Le Roch N, Douaud F, Havouis R, Delcros JG, Vaultier M, Moulinoux JP, Seiler N (2002) Dimethylsilane polyamines: cytostatic compounds with potentials as anticancer drugs. II. Uptake and potential cytotoxic mechanisms. Anticancer Res 22:3765–3776

    CAS  PubMed  Google Scholar 

  • Love R, Jacoby R, Newton M, Tutsch K, Simon K, Pomplun M, Verma A (1998) A randomized, placebo-controlled trial of low-dose alpha-difluoromethylornithine in individuals at risk for colorectal cancer. Cancer Epidemiol Biomark Prev 7:989–992

    CAS  Google Scholar 

  • Martinez ME, O’Brien TG, Fultz KE, Babbar N, Yerushalmi H, Qu N, Guo Y, Boorman D, Einspahr J, Alberts DS, Gerner EW (2003) Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene. Proc Natl Acad Sci USA 100:7859–7864

    Article  CAS  PubMed  Google Scholar 

  • Mens T, Tomasi S, Eifler-Lima VL, Uriac P, Huet J, Catros-Quemener V (1997) Inhibition of tumor growth and polyamine uptake by tetracyclic amidines bearing a putrescine moiety. Anticancer Res 17:4327–4332

    CAS  PubMed  Google Scholar 

  • Meyskens F Jr, Gerner E, Emerson S, Pelot D, Durbin T, Doyle K, Lagerberg W (1998) Effect of alpha-difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double-blinded trial for colon cancer prevention. J Natl Cancer Inst 90:1212–1218. doi:10.1093/jnci/90.16.1212

    Article  CAS  PubMed  Google Scholar 

  • Meyskens FL Jr, McLaren CE, Pelot D, Fujikawa-Brooks S, Carpenter PM, Hawk E, Kelloff G, Lawson MJ, Kidao J, McCracken J, Albers CG, Ahnen DJ, Turgeon DK, Goldschmid S, Lance P, Hagedorn CH, Gillen DL, Gerner EW (2008) Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo-controlled, double-blind trial. Cancer Prev Res 1:32–38

    Article  CAS  Google Scholar 

  • Palmer AJ, Ghani RA, Kaur N, Phanstiel O, Wallace HM (2009) A putrescine-anthracene conjugate: a paradigm for selective drug delivery. Biochem J 424(3):431–438

    Google Scholar 

  • Pang J, Long Y, Chen W, Jiang Z (2007) Amplification of DNA-binding affinities of protoberberine alkaloids by appended polyamines. Bioorg Med Chem Lett 17:1018–1021

    Article  CAS  PubMed  Google Scholar 

  • Pastre D, Pietrement O, Landousy F, Hamon L, Sorel I, David M, Delain E, Zozime A, Le Cam E (2006) A new approach to DNA bending by polyamines and its implication in DNA condensation. Eur Biophys J 35:214–223

    Article  CAS  PubMed  Google Scholar 

  • Phanstiel O, Price HL, Wang L, Juusola J, Kline M, Shah SM (2000) The effect of polyamine homologation on the transport and cytotoxicity properties of polyamine-(DNA-intercalator) conjugates. J Org Chem 65:5590–5599

    Article  CAS  PubMed  Google Scholar 

  • Phanstiel O, Kaur N, Delcros JG (2007) Structure–activity investigations of polyamine-anthracene conjugates and their uptake via the polyamine transporter. Amino Acids 33:305–313

    Article  CAS  PubMed  Google Scholar 

  • Porter CW, Miller J, Bergeron RJ (1984) Aliphatic chain length specificity of the polyamine transport system in ascites L1210 leukemia cells. Cancer Res 44:126–128

    CAS  PubMed  Google Scholar 

  • Quemener V, Blanchard Y, Chamaillard L, Havouis R, Cipolla B, Moulinoux JP (1994) Polyamine deprivation: a new tool in cancer treatment. Anticancer Res 14:443–448

    CAS  PubMed  Google Scholar 

  • Seiler N (2003a) Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect, Part 1. Selective enzyme inhibitors. Curr Drug Targets 4:537–564

    Article  CAS  PubMed  Google Scholar 

  • Seiler N (2003b) Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect, Part 2. Structural analogues and derivatives. Curr Drug Target 4:565–585

    Article  CAS  Google Scholar 

  • Seiler N, Dezeure F (1990) Polyamine transport in mammalian cells. Int J Biochem 22:211–218

    Article  CAS  PubMed  Google Scholar 

  • Seiler N, Delcros JG, Moulinoux JP (1996) Polyamine transport in mammalian cells: an update. Int J Biochem Cell Biol 28:843–861

    Article  CAS  PubMed  Google Scholar 

  • Soulet D, Gagnon B, Rivest S, Audette M, Poulin R (2004) A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J Biol Chem 279:49355–49366

    Article  CAS  PubMed  Google Scholar 

  • Stasi R (2008) Gemtuzumab ozogamicin: an anti-CD33 immunoconjugate for the treatment of acute myeloid leukaemia. Expert Opin Biol Ther 8:527–540

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Shigenaga A, Nemoto H, Shibuya M (2004) Synthesis and DNA damaging ability of enediyne–polyamine conjugates. Tetrahedron Lett 45:1955–1959

    Article  CAS  Google Scholar 

  • Volkow N, Goldman SS, Flamm ES, Cravioto H, Wolf AP, Brodie JD (1983) Labeled putrescine as a probe in brain tumors. Science 221:673–675

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM, Fraser AV (2004) Inhibitors of polyamine metabolism. Amino Acids 26:353–365

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM, Kerr HM (1982) A comparison of polyamine metabolism in normal and transformed baby-hamster-kidney cells. Biochem J 202:785–790

    CAS  PubMed  Google Scholar 

  • Wallace HM, Niiranen K (2007) Polyamine analogues: an update. Amino Acids 33:261–265

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed  Google Scholar 

  • Walters JD, Wojcik MS (1994) Polyamine transport in human promyelocytic leukemia cells and polymorphonuclear leukocytes. Leuk Res 18:703–708

    Google Scholar 

  • Wang L, Price HL, Juusola J, Kline M, Phanstiel O (2001) Influence of polyamine architecture on the transport and topoisomerase II inhibitory properties of polyamine DNA–Intercalator conjugates. J Med Chem 44:3682–3691

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Delcros JG, Biggerstaff J, Phanstiel O (2003a) Molecular requirements for targeting the polyamine transport system. Synthesis and biological evaluation of polyamine-anthracene conjugates. J Med Chem 46:2672–2682

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Delcros JG, Cannon L, Konate F, Carias H, Biggerstaff J, Gardner RA, Phanstiel O (2003b) Defining the molecular requirements for the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem 46:5129–5138

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Liu G, Ma Y, Cheng P, Wu Y, Wang M, Ji B, Zhao J, Wang C (2008) Synergistic antitumor effects of anthracenylmethyl homospermidine and alpha-difluoromethylornithine on promyelocytic leukemia HL60 cells. Toxicol In Vitro 22:352–358

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather M. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, A.J., Wallace, H.M. The polyamine transport system as a target for anticancer drug development. Amino Acids 38, 415–422 (2010). https://doi.org/10.1007/s00726-009-0400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0400-2

Keywords

Navigation