Skip to main content
Log in

Calpeptin, not calpain, directly inhibits an ion channel of the inner mitochondrial membrane

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The permeability transition pore (PTP) of inner mitochondrial membranes is a large conductance pathway for ions up to 1500 Da which opening is responsible for ion equilibration and loss of membrane potential in apoptosis and thus in several neurodegenerative diseases. The PTP can be regulated by the Ca2+-activated mitochondrial K channel (BK). Calpains are Ca2+-activated cystein proteases; calpeptin is an inhibitor of calpains. We wondered whether calpain or calpeptin can modulate activity of PTP or BK. Patch clamp experiments were performed on mitoplasts of rat liver (PTP) and of an astrocytoma cell line (BK). Channel-independent open probability (P o) was determined (PTP) and, taking into account the number of open levels, NPo by single channel analysis (BK). We find that PTP in the presence of Ca2+ (200 μM) is uninfluenced by calpain (13 nM) and shows insignificant decrease by the calpain inhibitor calpeptin (1 μM). The NPo of the BK is insensitive to calpain (54 nM), too. However, it is significantly and reversibly inhibited by the calpain inhibitor calpeptin (IC50 = 42 μM). The results agree with calpeptin-induced activation of the PTP via inhibition of the BK. Screening experiments with respirometry show calpeptin effects, fitting to inhibition of the BK by calpeptin, and strong inhibition of state 3 respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altznauer F, Conus S, Cavalli A, Folkers G, Simon HU (2004) Calpain-1 regulates Bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis. J Biol Chem 279:5947–5957

    Article  CAS  PubMed  Google Scholar 

  • Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF (2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 18:869–871

    CAS  PubMed  Google Scholar 

  • Bednarczyk P, Wieckowski MR, Broszkiewicz M, Skowronek K, Siemen D, Szewczyk A (2013) Putative structural and functional coupling of the mitochondrial BKCa channel to the respiratory chain. PLoS One 8(6):e68125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P, Di Lisa F, Fogolari F, Lippe G (2015) From ATP to PTP and back: a dual function for the mitochondrial ATP synthase. Circ Res 116:1850–1862

    Article  CAS  PubMed  Google Scholar 

  • Cao CM, Xia Q, Gao Q, Chen M, Wong TM (2005) Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther 312:644–650

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D (2008) Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore. Cell Physiol Biochem 22:127–136

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Debska-Vielhaber G, Siemen D (2010) Interaction of mitochondrial potassium channels with the permeability transition pore. FEBS Lett 584:2005–2012

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Gulbins E, Siemen D (2011) Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel. Cell Physiol Biochem 27:191–200

    Article  CAS  PubMed  Google Scholar 

  • Contran N, Cerana R, Crosti P, Malerba M (2007) Cyclosporin A inhibits programmed cell death and cytochrome c release induced by fusicoccin in sycamore cells. Protoplasma 231:193–199

    Article  CAS  PubMed  Google Scholar 

  • Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A, Bargmann CI, McIntire SL (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115:655–666

    Article  CAS  PubMed  Google Scholar 

  • Debska-Vielhaber G, Godlewski MM, Kicinska A, Skalska J, Kulawiak B, Piwonska M, Zablocki K, Kunz WS, Szewczyk A, Motyl T (2009) Large-conductance K+ channel openers induce death of human glioma cells. J Physiol Pharmacol 60:27–36

    CAS  PubMed  Google Scholar 

  • Dutt P, Spriggs CN, Davies PL, Jia Z, Elce JS (2002) Origins of the difference in Ca2+ requirement for activation of mu- and m-calpain. Biochem J 367:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine E, Eriksson O, Ichas F, Bernardi P (1998) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex i. J Biol Chem 273:12662–12668

    Article  CAS  PubMed  Google Scholar 

  • Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O’Rourke B (2012) Mitochondrial ROMK channel is a molecular component of mitoK(ATP). Circ Res 111:446–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Zhang SZ, Cao CM, Bruce IC, Xia Q (2005) The mitochondrial permeability transition pore and the Ca2 + -activated K+ channel contribute to the cardioprotection conferred by tumor necrosis factor-alpha. Cytokine 32:199–205

    Article  CAS  PubMed  Google Scholar 

  • Garlid KD (2000) Opening mitochondrial K(ATP) in the heart—what happens, and what does not happen. Basic Res Cardiol 95:275–279

    Article  CAS  PubMed  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu XQ, Pamenter ME, Siemen D, Sun X, Haddad GG (2014) Mitochondrial but not plasmalemmal BK channels are hypoxia-sensitive in human glioma. Glia 62:504–513

    Article  PubMed  Google Scholar 

  • Gulbins E, Sassi N, Grassmè H, Zoratti M, Szabò I (2010) Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim Biophys Acta 1797:1251–1259

    Article  CAS  PubMed  Google Scholar 

  • Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366:33–50

    Article  CAS  PubMed  Google Scholar 

  • Loupatatzis C, Seitz G, Schönfeld P, Lang F, Siemen D (2002) Single-channel currents of the permeability transition pore from the inner mitochondrial membrane of rat liver and of a human hepatoma cell line. Cell Physiol Biochem 12(5–6):269–278

    Article  CAS  PubMed  Google Scholar 

  • Parvez S, Winkler-Stuck K, Hertel S, Schönfeld P, Siemen D (2010) The dopamine-D2-receptor agonist ropinirole dose-dependently blocks the Ca2 + -triggered permeability transition of mitochondria. Biochim Biophys Acta 1797:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Polster BM, Basañez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454

    Article  CAS  PubMed  Google Scholar 

  • Reverter D, Strobl S, Fernandez-Catalan C, Sorimachi H, Suzuki K, Bode W (2001) Structural basis for possible calcium-induced activation mechanisms of calpains. Biol Chem 382:753–766

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Saito T, Saegusa N, Nakaya H (2005) Mitochondrial Ca2 + -activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation 111:198–203

    Article  CAS  PubMed  Google Scholar 

  • Sayeed I, Parvez S, Winkler-Stuck K, Seitz G, Trieu I, Wallesch CW, Schönfeld P, Siemen D (2006) Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole. FASEB J 20:556–558

    CAS  PubMed  Google Scholar 

  • Siemen D, Ziemer M (2013) What is the nature of the mitochondrial permeability transition pore and what is it not? IUBMB Life 65:255–262

    Article  CAS  PubMed  Google Scholar 

  • Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2 + -activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257:549–554

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, Zoratti M (2014) Mitochondrial channels: ion fluxes and more. Physiol Rev 94:519–608

    Article  CAS  PubMed  Google Scholar 

  • Wiechelman KJ, Braun RD, Fitzpatrick JD (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175:231–237

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B (2002) Cytoprotective role of Ca2 + -activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to F. N. Gellerich and Z. Gizatullina for advice and helpful discussions throughout the respirometry experiments. Mrs. K. Kaiser, C. Höhne, and J. Witzke gave us technical support, and Mrs. D. Koch from Leibniz Institute of Neurobiology, Magdeburg, kindly provided us with rat livers. Financial support by Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) is gratefully acknowledged.

Conflicts of interest

None of the authors has any conflicts of interest.

(Detlef Siemen on behalf of the authors)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Siemen.

Additional information

Handling Editor: Reimer Stick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derksen, M., Vorwerk, C. & Siemen, D. Calpeptin, not calpain, directly inhibits an ion channel of the inner mitochondrial membrane. Protoplasma 253, 835–843 (2016). https://doi.org/10.1007/s00709-015-0846-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0846-x

Keywords

Navigation