Skip to main content
Log in

Setting time and microstructure of Portland cement-bottom ash–sugarcane bagasse ash pastes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Bottom ash (BA) and sugarcane bagasse ash (SCBA) are by-products from power plants and the sugar industry and they have a great potential to be used in green-concrete structure applications. This study reports the effects of BA and SCBA on the properties of Portland cement (PC) pastes and mortars as cement replacement, by up to 20 percent by weight. All mortars had a water to binder ratio (w/PC + BA, w/PC + SCBA, and w/PC + BA + SCBA) of 0.5. Normal consistency, setting time, compressive strength, and microstructure (using scanning electron microscope, SEM) were systematically investigated. The results showed that the water requirement for a normal consistency was decreased with increasing BA content. The addition of SCBA, on the other hand, caused the water requirement to increase. The initial and final setting times of all pozzolan mixes were longer when compared to that of PC mix. The compressive strengths of all mixtures with BA were similar to that of the PC mix at 90 days. In addition, the SEM micrograph of pastes confirmed a good pozzolanic reaction between ash particles and Portland cement, resulting in an increase in the compressive strength of the mortars, especially after a period of time (more than 28 days).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sata V, Sathonsaowaphak A, Chindaprasirt P (2012) Cem Concr Compos 34:700

    Article  CAS  Google Scholar 

  2. Li ZJ (2011) Advanced concrete technology. Wiley, New Jersey

    Book  Google Scholar 

  3. Zhang MH, Lastra R, Malhotra VM (1996) Cem Concr Res 26:963

    Article  CAS  Google Scholar 

  4. Kiattikomol K, Jaturapitakkul C, Songpiriyakij S, Chutubtim S (2001) Cem Concr Compos 23:335

    Article  CAS  Google Scholar 

  5. Sata V, Jaturapitukkul C, Rattanashotinunt C (2010) J Mater Civil Eng 22:1033

    Article  CAS  Google Scholar 

  6. Manz OE (1997) Fuel 76:691

    Article  CAS  Google Scholar 

  7. Singh M, Siddique R (2013) Resour Conserv Recy 72:20

    Article  Google Scholar 

  8. Zhang B, Poon CS (2015) J Clea Prod 99:94

    Article  CAS  Google Scholar 

  9. Targana S, Olgunb A, Erdoganb Y, Sevincc V (2003) Cem Concr Res 33:1175

    Article  Google Scholar 

  10. Cheriaf M, Rocha JC, Pera J (1999) Cem Concr Res 29:1387

    Article  CAS  Google Scholar 

  11. Jaturapitakkul C, Cheerarot R (2003) J Mater Civil Eng 15:48

    Article  CAS  Google Scholar 

  12. Hernández JFM, Middendorf B, Gehrke M, Budelmann H (1998) Cem Concr Res 28:1525

    Article  Google Scholar 

  13. Singh NB, Singh VD, Rai S (2000) Cem Concr Res 30:1485

    Article  CAS  Google Scholar 

  14. Paya J, Monzo J, Borrachero MV, Diaz-Pinzon L, Ordonez LM (2002) J Chem Technol Biotechnol 77:321

    Article  CAS  Google Scholar 

  15. Ganesan K, Rajagopal K, Thangavel K (2007) Cem Concr Compos 29:515

    Article  CAS  Google Scholar 

  16. Rukzon S, Chindaprasirt P (2012) Mater Des 34:45

    Article  CAS  Google Scholar 

  17. Cordeiro GC, Toledo Filho RD, Tavares LM, Fairbairn EMR (2008) Cem Concr Compos 30:410

    Article  CAS  Google Scholar 

  18. Mtarfi NH, Rais Z, Taleb M, Kada KM (2017) J Build Eng 9:109

    Article  Google Scholar 

  19. Moon GD, Oh S, Choi YC (2016) Constr Build Mater 124:1072

    Article  CAS  Google Scholar 

  20. Kim HK (2015) Constr Build Mater 91:57

    Article  Google Scholar 

  21. Thomas M (2013) Supplementary cementing materials in concrete. Taylor & Francis, London

    Book  Google Scholar 

  22. Kamali M, Ghahremaninezhad A (2016) Constr Build Mater 112:915

    Article  CAS  Google Scholar 

  23. Hou P, Wang K, Qian J, Kawashima S, Kong D, Shah SP (2012) Cem Concr Compos 34:1095

    Article  CAS  Google Scholar 

  24. Sakai E, Miyahara S, Ohsawa S, Lee SH, Daimon M (2005) Cem Concr Res 35:1135

    Article  CAS  Google Scholar 

  25. Byfors K (1987) Cem Concr Res 17:115

    Article  CAS  Google Scholar 

  26. Akram T, Memon SA, Obaid H (2009) Constr Build Mater 23:703

    Article  Google Scholar 

  27. Nunes C, Slížková Z, Stefanidou M, Němeček J (2016) Cem Concr Res 83:152

    Article  CAS  Google Scholar 

  28. Stefanidou M (2013) Rom J Mater 43:223

    Google Scholar 

  29. Manuel GB, Francisco A, Auxi B, Jesús A, Antonio R (2014) Constr Build Mater 72:231

    Article  Google Scholar 

  30. Kurama H, Kaya M (2008) Constr Build Mater 22:1922

    Article  Google Scholar 

  31. Nakanishi YE, Frías M, Martínez-Ramírez S, Santos FS, Rodrigues SM, Rodríguez O, Savastano M Jr (2014) Constr Build Mater 73:391

    Article  Google Scholar 

  32. Han F, Lui R, Yan P (2014) Constr Build Mater 68:630

    Article  Google Scholar 

  33. Medina G, Sáez del Bosque IF, Frías M, Sánchez de Rojas MI, Medina C (2017) Appl Clay Sci 135:362

    Article  CAS  Google Scholar 

  34. Robayo-Salazar RA, Mejía de Gutiérrez R, Puertas F (2016) Appl Clay Sci 132–133:491

    Article  Google Scholar 

  35. Wilson W, Rivera-Torres JM, Sorelli L, Durán-Herrera A, Tagnit-Hamou A (2017) Cem Concr Res 91:1

    Article  CAS  Google Scholar 

  36. Khalid NHA, Hussin MW, Mirza J, Ariffin NF, Ismail MA, Lee H, Mohamed A, Jaya RP (2016) Constr Build Mater 102:950

    Article  CAS  Google Scholar 

  37. Bajare D, Bumanis G, Upeniece L (2013) Proced Eng 57:149

    Article  CAS  Google Scholar 

  38. Curcio F, DeAngelis BA, Pagliolico S (1998) Cem Concr Res 28:803

    Article  CAS  Google Scholar 

  39. Goldman A, Bentur A (1993) Cem Concr Res 23:962

    Article  CAS  Google Scholar 

  40. Annual Book of ASTM standards, American Society for Testing and Materials (2008) Part C 618-08

  41. Annual Book of ASTM standards, American Society for Testing and Materials (2011) Part C 187-11

  42. Mehta PK, Monteiro PJM (2006) Concrete: microstructure, properties, and materials, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  43. Annual Book of ASTM standards, American Society for Testing and Materials (2013) Part C 191-13

  44. Annual Book of ASTM standards, American Society for Testing and Materials (1999) Part C 305-99

  45. Annual Book of ASTM standards, American Society for Testing and Materials (2001) Part C 109-01

Download references

Acknowledgements

The authors would like to thank Naresuan University for funding of this research. The authors would also like to express gratitude to Department of Physics for supporting the materials and equipments used in this research. Thank extend to Dr. Kyle V. Lopin for language checking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanongsak Nochaiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkarapongtrakul, A., Julphunthong, P. & Nochaiya, T. Setting time and microstructure of Portland cement-bottom ash–sugarcane bagasse ash pastes. Monatsh Chem 148, 1355–1362 (2017). https://doi.org/10.1007/s00706-017-1953-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-1953-5

Keywords

Navigation