Skip to main content

Advertisement

Log in

Folate and Alzheimer: when time matters

  • Dementias - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Folate is necessary for DNA and mtDNA integrity and via folate/B12-dependent methionine cycle for methylation of multiple substrates (epigenetic DNA and enzymes) and methylation of homocysteine. During embryogenesis, folate deficiency is a risk factor for neural tube defects and late in life for cognitive decline and Alzheimer’s dementia (AD). It induces several Alzheimer pathomechanisms like oxidative stress, Ca++ influx, accumulation of hyperphosphorylated tau and β-amyloid. But impact of folic acid supplementation on prevention or delay of dementia is a matter of debate. Six out of seven randomized controlled trials (RCT) with B vitamin intervention periods between 2 and 5.4 years reported about cognitive benefits in the supplemented groups mainly for those subjects with high homocysteine or low folate levels at baseline. This review tries to demonstrate the connection between folate deficiency and AD, analyses selected epidemiologic studies and RCT on folate/B12/homocysteine with long-observation periods (≥2 years RCT; ≥4 years observational) and attempts to find explanations for the controversy in literature like short follow-up, heterogeneity of subjects concerning age, recruitment, baseline cognition, inclusion criteria and probably “misleading”(not representative for the past) folate/B12/homocysteine levels due to not reported short-term use of multivitamins or food-fortification. Population-based studies—epidemiologic and interventional—starting in the fourth decade would provide the best information about the impact of folate on later development of AD. Mandatory folate fortification areas will be important future field studies for—like neural tube defects—hopefully declining AD incidence and disproving safety concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen LH (2009) How common is vitamin B12 deficiency? Am J Clin Nutr 89 (suppl):693S–696S

    Article  Google Scholar 

  • Appling DR (1991) Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J 5:2645–2651

    PubMed  CAS  Google Scholar 

  • Blasko I, Hinterberger M, Kemmler G, Jungwirth S, Krampla W, Leitha T, Tragl KH, Fischer P (2012) Conversion from mild cognitive impairment to dementia: influence of folic acid and vitamin B12 use in the VITA cohort. J Nutr Health Aging (in press) (accepted 2011-10-11)

  • Bostom AG, Selhub J, Jacques PF, Rosenberg IH (2001) Power shortage: clinical trials testing the “homocysteine hypothesis” against a background of folic acid-fortified cereal grain flour. Ann Int Med 135:133–137

    PubMed  CAS  Google Scholar 

  • Brohede J, Rinde M, Winblad B, Graff C (2010) A DNA methylation study of the amyloid precursor protein gene in several brain regions from patients with familial Alzheimer disease. J Neurogenet 24:179–181

    Article  PubMed  CAS  Google Scholar 

  • Chan A, Shea TB (2006a) Dietary and genetically induced oxidative stress alters tau-phosphorylation: influence of folate and apolipoprotein E deficiency. J Alzheimers Dis 9:399–406

    PubMed  CAS  Google Scholar 

  • Chan A, Shea TB (2006b) Supplementation with apple juice attenuates presenilin-1 over expression during dietary and genetically induced oxidative stress. J Alzheimers Dis 10:353–358

    PubMed  CAS  Google Scholar 

  • Chan A, Tchantchou F, Rogers EJ, Shea TB (2009) Dietary deficiency increases presenilin expression, gamma-secretase activity, and Abeta levels: potentiation by ApoE genotype and alleviation by S-adenosyl methionine. J Neurochem 110:831–836

    Article  PubMed  CAS  Google Scholar 

  • Clarke R (2006) Vitamin B12, folic acid, and the prevention of dementia. N Engl J Med 354:2817–2819

    Article  PubMed  CAS  Google Scholar 

  • Clarke R, Halsey J, Lewington S, Lonn E, Armitage J, Manson JE, Bonaa KH, Spence D, Nygard O, J amison R, Gaziano JM, Guarino P, Bennet D, Mir F, Peto R, Collins R, For the B-Vitamin treatment trialists'collaboration (2010) Effect of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality. Meta-analysis of 8 randomized trials involving 37 485 individuals. Arch Intern Med 170:1622–1631

    Article  PubMed  CAS  Google Scholar 

  • Corrada MM, Kawas CH, Hallfrisch J, Muller D, Brookmeyer E (2005) Reduced risk of Alzheimer’s disease with high folate intake: The Baltimore Longitudinal Study of Aging. Alzheimer’s Dement 1:11–18

    Article  CAS  Google Scholar 

  • Dangour AD, Whitehouse PJ, Rafferty K, Mitchell SA, Smith L, Hawkesworth S, Vellas B (2010) B-vitamins and fatty acids in the prevention and treatment of Alzheimer`s disease and dementia: a systematic review. J Alzheimer Dis 22:205–224

    CAS  Google Scholar 

  • de Jager CA, Oulhay A, Jacoby R, Refsum H, Smith DA (2011) Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. doi:10.1002/gps.2758

  • Dietrich M, Brown CJ, Block G (2005) The effect of folate fortification of cereal-grain products on blood folate status, dietary folate intake, and dietary folate sources among adult non-supplement users in the United States. J Am Coll Nutr 24:266–274

    PubMed  CAS  Google Scholar 

  • Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, Verhoef P (2007) Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369:208–216

    Article  PubMed  CAS  Google Scholar 

  • Elias MF, Sullivan LM, D′Agostino RB, Elias PK, Jacques PF, Selhub J, Seshadri S, Au R, Beiser A, Wolf PA (2005) Homocysteine and cognitive performance in the Framingham Offspring Study: age is important. Am J Epidemiol 162:644–653

    Article  PubMed  Google Scholar 

  • Fenech M (2010) Folate, DNA damage and the aging brain. Mech Ageing Develop 131:236–241

    Article  CAS  Google Scholar 

  • Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M, For Alzheimer′s Disease International (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    Article  PubMed  Google Scholar 

  • Fischer P, Zehetmayer S, Jungwirth S, Weissgram S, Krampla W, Hinterberger M, Torma S, Rainer M, Huber K, Hoenigschnabl S, Gelpi E, Bauer K, Leitha T, Bauer P, Tragl KH (2008) Risk factors for Alzheimer dementia in a community-based birth cohort at the age of 75 years. Dement Geriatr Cogn Disord 25:501–507

    Article  PubMed  Google Scholar 

  • Fleming JL, Phiel CJ, Toland AE (2011) The role for oxidative stress in aberrant DNA methylation in Alzheimer’s disease. Current Alzheimer Res 8 (Epub ahead of print)

  • Ford AH, Flicker L, Alfonso H, Thomas J, Clarnette R, Martins R, Almeida OP (2010) Vitamin B12, B6, and folic acid for cognition in older men. Neurology 75:1540–1547

    Article  PubMed  CAS  Google Scholar 

  • Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Babley PJ, Olivieri O, Jacques PF, Rosenberg IH, Corrocher R, Selhub J (2002) A common mutation in the 5,10 methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. PNAS 99:5606–5611

    Article  PubMed  CAS  Google Scholar 

  • Fuchs D, Jaeger M, Widner B, Wirleitner B, Artner-Dworzak E, Leblhuber F (2001) Is homocysteinemia due to oxidative depletion of folate rather than to insufficient dietary intake? Clin Chem Lab Med 39:691–694

    Article  PubMed  CAS  Google Scholar 

  • Fuso A, Scarpa S (2011) One-carbon metabolism and Alzheimer′s disease: is it all a methylation matter? Neurobiol Aging 32:1192–1195

    Article  PubMed  CAS  Google Scholar 

  • Fuso A, Seminara L, Cavallaro RA, Anselmi F, Scarpa S (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and β-amyloid production. Mol Cell Neurosci 28:195–204

    Article  PubMed  CAS  Google Scholar 

  • Haan MN, Miller JW, Aiello AE, Whitmer RA, Jagust WJ, Mungas DM, Allen LH, Green R (2007) Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am J Clin Nutr 85:511–517

    PubMed  CAS  Google Scholar 

  • Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ (2002) Cytoplasmic serine hydroxymethyltransferase mediates competition between folate dependent deoxyribonucleotide and S-adenolsymethionine biosyntheses. J Biol Chem 277:38381–38389

    Article  PubMed  CAS  Google Scholar 

  • Ho PI, Collins SC, Dhitavat S, Ortiz D, Ashline D, Rogers E, Shea TB (2001) Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. J Neurochem 78:249–253

    Article  PubMed  CAS  Google Scholar 

  • Ho PI, Ashline D, Dhitavat S, Ortiz D, Collins SC, Shea TB, Rogers E (2003) Folate deprivation induces neurodegeneration: roles of oxidative stress and increased homocysteine. Neurobiol Dis 14:32–42

    Article  PubMed  CAS  Google Scholar 

  • Hooshmand B, Solomon A, Kareholt I, Leiviskä J, Rusanen M, Ahtiluoto S, Winblad B, Laatikainen T, Soininen H, Kivipelto M (2010) Homocysteine and holotranscobalamin and the risk of Alzheimer disease. A longitudinal study. Neurology 75:1408–1414

    Article  PubMed  CAS  Google Scholar 

  • Hua Y, Zhao H, Kong Y, Ye M (2011) Association between the MTHFR gene and Alzheimer’s disease: a metaanalysis. Int J Neurosci 121:462–471

    Article  PubMed  CAS  Google Scholar 

  • Iskandar BJ, Nelson AN, Resnick D, Skene P, Gao P, Johnson C, Cook TD, Hariharan N (2004) Folic acid supplementation enhances repair of the adult central nervous system. Ann Neurol 56:221–227

    Article  PubMed  CAS  Google Scholar 

  • Jacques PF, Selhub J, Bostom AG, Wilson PW, Rosenberg IH (1999) The effect of folic acid fortification on plasma folate and total homocysteine concentrations. NEJM 340:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • James SJ, Melnyk S, Pogribna M, Pogribny IP, Caudill MA (2002) Elevation in S-adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for homocysteine-related pathology. J Nutr 132:2361S–2366S

    PubMed  CAS  Google Scholar 

  • Jung AY, Smulders Y, Verhoef P, Kok FJ, Blom H, Kok RM, Kampman E, Durga J (2011) No effect of folic acid supplementation on global DNA methylation in men and women with moderately elevated homocysteine. PLoS ONE 6(9):e24976. doi:10.1371/journal.pone.0024976

    Article  PubMed  CAS  Google Scholar 

  • Kado DM, Karlamangla AS, Huang MH, Troen A, Rowe JW, Selhub J, Seeman TE (2005) Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high functioning adults: MacArthur studies of successful aging. Am J Med 118:161–167

    Article  PubMed  CAS  Google Scholar 

  • Kageyama M, Hiraoka M, Kagawa Y (2008) Relationsship between genetic polymorphism, serum folate and homocysteine in Alzheimer′s disease. Asia Pac J Public Health 20 Suppl:111–117

    PubMed  Google Scholar 

  • Kang JH, Cook N, Manson JA, Buring JE, Albert CM, Grodstein F (2008) A trial of B vitamins and cognitive function among women at high risk of cardiovascular disease. Am J Clin Nutr 88:1602–1610

    Article  PubMed  CAS  Google Scholar 

  • Kivipelto M, Annerbo S, Hultdin J, Bäckman L, Viitanen M, Fratiglioni L, Lökk J (2009) Homocysteine and holotranscobalamin and the risk of dementia and Alzheimer disease: a prospective study. Eur J Neurol 16:808–813

    Article  PubMed  CAS  Google Scholar 

  • Kruman II, Kumaravel TS, Lohani A, Pedersen WA, Cutler RG, Kruman Y, Haughey N, Lee J, Evans M, Mattson MP (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 22:1752–1762

    PubMed  CAS  Google Scholar 

  • Kruman II, Mouton PR, Emokpae R Jr, Cutler RC, Mattson MP (2005) Folate deficiency inhibits proliferation of adult hippocampal progenitors. NeuroReport 16:1055–1059

    Article  PubMed  CAS  Google Scholar 

  • Kwok T, Lee J, Law CB, Pan PC, Yung CY, Choi KC, Lam LC (2011) A randomized placebo controlled trial of homocysteine lowering to reduce cognitive decline in older demented people. Clin Nutr 30:297–302

    Article  PubMed  CAS  Google Scholar 

  • Lahiri DK, Maloney B (2010) The “LEARn” (Latent Early Life Associated Regulation) model integrates environmental risk factors and the developmental basis of Alzheimer’s disease, and proposes remedial steps. Exp Gerontol 45:291–296

    Article  PubMed  CAS  Google Scholar 

  • Lin HC, Hsieh HM, Chen YH, Hu ML (2009) S-Adenosylhomocysteine increases beta-amyloid formation in BV-2 microglial cells by increased expressions of beta-amyloid precursor protein and presenilin 1 and by hypomethylation of these gene promotors. Neurotoxicology 30:622–627

    Article  PubMed  CAS  Google Scholar 

  • Luchsinger JA, Tang MX, Miller J, Green R, Mayeux R (2007) Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. Arch Neurol 64:86–92

    Article  PubMed  Google Scholar 

  • MacFarlane AJ, Perrs CA, Girnary HH, Gao D, Allen RH, Stabler SP, Shane B, Stover PJ (2009) Mthfd1 is an essential gene in mice and alters biomarkers of impaired one-carbon metabolism. J Biol Chem 284:1533–1539

    Article  PubMed  CAS  Google Scholar 

  • MacMahon JA, Green TJ, Skeaff CM, Knight RG, Mann JI, Williams SM (2006) A controlled trial of homocysteine lowering and cognitive performance. N Engl J Med 354:2764–2772

    Article  Google Scholar 

  • Malouf R, Grimley EJ (2008) Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev 4:CD004514. doi:10.1002/14651858.CD004514.pub2

    PubMed  Google Scholar 

  • Maron BA, Loscalzo J (2009) The treatment of hyperhomocysteinemia. Annu Rev Med 60:39–54. doi:10.1146/annurev.med.60.041807.123308

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26(3):137–146

    Article  PubMed  CAS  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    Article  PubMed  CAS  Google Scholar 

  • Morris JC (1993) The clinical dementia rating (CDR) current version and scoring rules. Neurology 43:2412–2414

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Tangney CC (2007) Is dietary intake of folate too low? Lancet 369:166–167

    Article  PubMed  Google Scholar 

  • Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, Mellits ED, Clark C (1989) CERAD investigators: The Consortium to Establish a Registry for Alzheimer’s disease (CERAD). I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Evans DA, Bienias JL, Tangney CC, Hebert LE, Scherr PA, Schneider JA (2005) Dietary folate and vitamin B12 intake and cognitive decline among community dwelling older persons. Arch Neurol 62:641–645

    Article  PubMed  Google Scholar 

  • Morris MC, Evans DA, Schneider JA, Tangney CC, Bienias JL, Aggarwal NT (2006) Dietary folate and vitamin B12 and B6 not associated with incident Alzheimer’s disease. J Alzheimers Dis 9:435–443

    PubMed  Google Scholar 

  • Morris MS, Jaques PF, Rosenberg IH, Selhub J (2007) Folate and vitamin B12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am J Clin Nutr 85:193–200

    PubMed  CAS  Google Scholar 

  • Morris MS, Jacques PF, Rosenberg IH, Selhub J (2010) Circulating unmetabolized folic acid and 5-methyltetrahydrofolate in relation to anemia, macrocytosis and cognitive test performance in American seniors. Am J Clin Nutr 91:1733–1744

    Article  PubMed  CAS  Google Scholar 

  • Naj AC, Beecham GW, Martin ER, Gallins PJ, Powell EH, Konidari I, Whitehead PL, Cai G, Haroutunian V, Scott WK, Vance JM, Slifer MA, Gwirtsman HE, Gilbert JR, Haines JL, Buxbaum JD, Pericak-Vance MA (2010) Dementia revealed: novel chromosome 6 locus for late onset Alzheimer Disease provides genetic evidence for folate pathway abnormalities. PLoS Genet 6(9):e1001130. doi:10.1371/journal.pgen.1001130

    Article  PubMed  Google Scholar 

  • Nelson C, Wengreen HJ, Munger RG, Corcoran CD, The Cache County Investigators (2009) Dietary folate, vitamin B-12, vitamin B-6 and incident Alzheimer’s disease: The Cache County Memory, Health and Aging Study. J Nutr Health Aging 13:899–905

    Article  PubMed  CAS  Google Scholar 

  • Nurk E, Refsum H, Tell GS, Engedal K, Vollset SE, Ueland PM, Nygaard HA, Smith AD (2005) Plasma total homocysteine and memory in the elderly: The Hordaland homocysteine study. Ann Neurol 58:847–857

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE (2009) Mild cognitive impairment:ten years later. Arch Neurol 66:1447–1455

    Article  PubMed  Google Scholar 

  • Pfeiffer CM, Caudill SP, Gunter EW, Osterloh J, Sampson EJ (2005) Biochemical indicators of B vitamin status in the US population after folic acid fortification:results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr 82:442–450

    PubMed  CAS  Google Scholar 

  • Pierrot N, Ferrao Santos S, Feyt C, Morel M, Jean-Pierre Brion JP, Octave JN (2006) Calcium mediated transient phosphorylation of Tau and amyloid precursor protein followed by intraneuronal amyloid β accumulation. J Biol Chem 281:39907–39914

    Article  PubMed  CAS  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. NEJM 362:329–344

    Article  PubMed  CAS  Google Scholar 

  • Quinlivan EP, Davis SR, Shelnutt KP, Henderson GN, Ghandour H, Shane B, Selhub J, Bailey LB, Stacpoole PW, Gregory JF (2005) Methylenetetrahydrofolate reductase 677 C → T polymorphism and folate status affect one-carbon incorporation into human DNA deoxynucleosides. J Nutr 135:389–396

    PubMed  CAS  Google Scholar 

  • Ravaglia G, Forti P, Maioli F, Martelli M, Servadei L, Brunetti N, Porcellini E, Licastro F (2005) Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am J Clin Nutr 82:636–643

    PubMed  CAS  Google Scholar 

  • Refsum H, Smith AD (2008) Are we ready for mandatory fortification with vitamin B12? Am J Clin Nutr 88:253–254

    PubMed  CAS  Google Scholar 

  • Rogers EJ, Chen SS, Chan A (2007) Folate deficiency and plasma homocysteine during increased oxidative stress. NEJM 357:421–422

    Article  PubMed  CAS  Google Scholar 

  • Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozo JM, Brun A, Hofman A, Moody DM, O’Brien MD, Yamaguchi T, Grafman J, Drayer BP, Bennett DA, Fisher M, Ogata J, Kokmen E, Bermejo F, Wolf PA, Gorelick PB, Bick KL, Pajeau AK, Bell MA, DeCarli C, Culebras A, Korczyn AD, Bogousslavsky J, Hartmann A, Scheinberg P (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43:250–260

    Article  PubMed  CAS  Google Scholar 

  • Ross CM (2005) Folate, mitochondria, ROS, and the aging brain. Am J Med 118:1174–1178

    Article  PubMed  Google Scholar 

  • Selhub J (2008) Public health significance of elevated homocysteine. Food Nutr Bull 29(2 Suppl):S116–S125

    PubMed  Google Scholar 

  • Selhub J, Paul L (2011) Folic acid fortification: why not vitamin B12 also? BioFactors 37:269–271

    Article  PubMed  CAS  Google Scholar 

  • Selhub J, Bagley LC, Miller J, Rosenberg IH (2000) B vitamins, homocysteine and neurocognitive function in the elderly. Am J Clin Nutr 71:614S–620S

    PubMed  CAS  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D′Agostino RB, Wislon PWF, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Rogers E (2002) Homocysteine and dementia. N Engl J Med 346:2007–2008

    Article  PubMed  Google Scholar 

  • Shea TB, Rogers E, Ashline D, Ortiz D, Sheu MS (2002) Apolipoprotein E deficiency promotes increased oxidative stress and compensatory increases in antioxidants in brain tissue. Free Radic Biol Med 33:1115–1120

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Rogers E, Remington R. (2012) Nutrition and dementia: Are we asking the right questions? J Alzheimers Dis 29. doi:10.3233/JAD-2012-112231 (Epub ahead of print)

  • Singh R, Kanwar SS, Sood PK, Nehru B (2011) Beneficial effects of folic acid on enhancement of memory and antioxidant status in aged rat brain. Cell Mol Neurobiol 31:83–91

    Article  PubMed  CAS  Google Scholar 

  • Smith AD, Smith SM, deJager CA, Whitbread P, Johnston C, Agacinski G, Oulhaj A, Bradley KM, Jacoby R, Refsum H (2010) Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS ONE 5(9):e12244. doi:10.1371/journal.pone.0012244

    Article  PubMed  Google Scholar 

  • Snowdon DA, Tully CL, Smith CD, Riley KP, Markesbery WR (2000) Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun Study. Am J Clin Nutr 71:993–998

    PubMed  CAS  Google Scholar 

  • Sontag E, Nunbhakdi-Craig V, Sontag JM, Arrastia RD, Ogris E, Dayal S, Lentz SR, Arning E, Bottiglieri T (2007) Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci 27:2751–2759

    Article  PubMed  CAS  Google Scholar 

  • Sontag JM, Nunbhakdi-Craig V, Montgomery L, Arning E, Bottiglieri T, Sontag E (2008) Folate deficiency induces in vitro and mouse brain region-specific downregulation of leucine carboxyl methyltransferase 1 and protein phosphatase 2A Bα subunit expression that correlate with enhanced tau phosphorylation. J Neurosci 28:11477–11487

    Article  PubMed  CAS  Google Scholar 

  • Stanger O, Wonisch W (2012) Enzymatic and non-enzymatic antioxidative effects of folic acid and its reduced derivates. Subcell Biochem 56:131–161

    Article  PubMed  CAS  Google Scholar 

  • Ulrey CL, Liu L, Andrews LG, Tollefsbol TO (2005) The impact of metabolism on DNA methylation. Hum Mol Genet 14(1):R139–R147

    Article  PubMed  CAS  Google Scholar 

  • Walker JG, Batterham PJ, Mackinnon AJ, Jorm AF, Hickie I, Fenech M, Kljakovic M, Crisp D, Christensen H (2012) Oral folic acid and vitamin B-12 supplementation to prevent cognitive decline in community dwelling older adults with depressive symptoms—the Beyond Ageing Project: a randomized controlled trial. Am J Clin Nutr 95:194–203

    Article  PubMed  Google Scholar 

  • Wang S-C, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late onset Alzheimer’s disease. PLoS ONE 3(7):e2698. doi:10.1371/journal.pone.0002698

    Article  PubMed  Google Scholar 

  • West RL, Lee JM, Maroun LE (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 6:141–146

    Article  PubMed  CAS  Google Scholar 

  • Yetley EA, Johnson CL (2011) Folate and vitamin B12 biomarkers in NHANES: history of their measurement and use. Am J Clin Nutr 94(suppl):1S–10S

    Google Scholar 

  • Yves Christen (2000) Oxidative stress and Azheimer disease. Am J Clin Nutr 71(Suppl):621S–629S

    Google Scholar 

Download references

Acknowledgments

The Vienna Transdanube Aging (VITA) study is supported by the Ludwig Boltzmann Society, Vienna-Austria, and is carried out at the Ludwig Boltzmann Institute of Aging Research which is located at the Donauspital, Vienna-Austria.

Conflict of interest

Hinterberger and Fischer declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinterberger, M., Fischer, P. Folate and Alzheimer: when time matters. J Neural Transm 120, 211–224 (2013). https://doi.org/10.1007/s00702-012-0822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0822-y

Keywords

Navigation