Skip to main content
Log in

Ultrasensitive determination of mercury in waters via photochemical vapor deposition onto quartz substrates coated with palladium nanoparticles followed by total reflection X-ray fluorescence analysis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a method for ultrasensitive detection of mercury (Hg) by total reflection X-ray fluorescence following photogeneration of Hg vapor and trapping onto quartz substrates coated with nanostructured palladium. The nanostructured coating was characterized by transmission electron microscopy. Hg vapor was generated by online photo-UV reduction in the presence of acetic acid, which acts as a precursor for reducing species. Trapping of Hg occurred as a result of amalgamation. A trapping time of 30 min and an acetic acid concentration of 2 mol L−1 provided the best results. An enrichment factor of 127 and a limit of detection as low as 54 ng L−1 of Hg were achieved. The repeatability of the method (expressed as the relative standard deviation at a level of 1 μg L−1) was 3 %. The method was successfully applied to the determination of Hg in water samples spiked with 10 μg L−1 of Hg. Recoveries ranged from 96 to 101 %.

A new method is described for ultrasensitive detection of Hg in natural waters by total reflection X-ray fluorescence following on-line photo UV vapor generation and trapping onto quartz substrates coated with palladium nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. National Primary Drinking Water Regulations, EPA 816-F-09-004, May 2009. http://water.epa.gov/drink/contaminants/upload/mcl-2.pdf (updated 2015)

  2. EU (European Communities) (2003) Commision Directive 2003/40/EC on natural mineral waters

  3. Tyson JF, Yourd E (2004) Flame atomic absorption spectroscopy, including hydride generation and cold vapour techniques. In: Cullen M (ed) Atomic spectroscopy in elemental analysis. CRC Press, Cornwall, pp 239–281

    Google Scholar 

  4. Costa ACM, de Araujo UB, de Jesus EFD, Anjos MJ, Lopes RT (2014) Development and characterization of portable total reflection X-ray fluorescence system usinga waveguide for trace elements analysis. Anal Sci 30:955–960. doi:10.2116/analsci.30.955

    Article  Google Scholar 

  5. Liu Y, Imashuku S, Kawai J (2013) Multi-element analysis by portable total reflection X-ray fluorescence spectrometer. Anal Sci 29:793–797. doi:10.2116/analsci.29.793

    Article  CAS  Google Scholar 

  6. Kunimura S, Watanabe D, Kawai J (2009) Optimization of a glacing angle for simultaneous trace element analysis by using a portable total reflection X-ray fluorescence spectrometer. Spectrochim Acta Part B 64:288–290. doi:10.1016/j.sab.2009.02.004

    Article  Google Scholar 

  7. Kunimura S, Kawai J (2007) Portable total reflection X-ray fluorescence spectrometer for nanogram Cr detection limit. Anal Chem 79:2593–2595. doi:10.1021/ac062279t

    Article  CAS  Google Scholar 

  8. De La Calle I, Cabaleiro N, Romero V, Lavilla I, Bendicho C (2013) Sample pretreatment strategies for total reflection X-ray fluorescence analysis: a tutorial review. Spectrochim Acta Part B 90:23–54. doi:10.1016/j.sab.2013.10.001

    Article  Google Scholar 

  9. Greaves ED, Sosa JA, Sajo-Bohus L, Alvarez M, Wobrauschek P, Streli C (1997) Trace element determination of mercury by total-reflection X-ray fluorescence. Spectrochim Acta Part B 52:945–951. doi:10.1016/S0584-8547(97)00001-3

    Article  Google Scholar 

  10. Bennum L, Gillette VH, Greaves ED (1999) Data processing technique for mercury determination by total-reflection X-ray fluorescence using amalgamation with gold. Spectrochim Acta Part B 54:1291–1301. doi:10.1016/S0584-8547(99)00076-2

    Article  Google Scholar 

  11. Jiang X, Huang K, Deng D, Xia H, Hou X, Zheng C (2012) Nanomaterials in analytical atomic spectrometry. TrAC Trends Anal Chem 39:38–59. doi:10.1016/j.trac.2012.06.002

    Article  CAS  Google Scholar 

  12. Pyrzynska K (2013) Use of nanomaterials in sample preparation. TrAC Trends Anal Chem 43:100–108. doi:10.1016/j.trac.2012.09.022

    Article  CAS  Google Scholar 

  13. Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC Trends Anal Chem 51:33–43. doi:10.1016/j.trac.2013.05.011

    Article  CAS  Google Scholar 

  14. Romero V, Costas-Mora I, Lavilla I, Bendicho C (2014) Silver nanoparticle-assisted preconcentration of selenium and mercury on quartz reflectors for total reflection X-ray fluorescence analysis. J Anal At Spectrom 29:696–706. doi:10.1039/c3ja50361e

    Article  CAS  Google Scholar 

  15. Bendicho C, Pena F, Costas M, Gil S, Lavilla I (2010) Photochemistry-based sample treatment as greener approaches for trace-element analysis and speciation. TrAC Trends Anal Chem 29:681–691. doi:10.1016/j.trac.2010.05.003

    Article  CAS  Google Scholar 

  16. Yin Y, Liu J, Jiang G (2011) Photo-induced chemical-vapor generation for sample introduction in atomic spectrometry. TrAC Trends Anal Chem 30:1672–1684. doi:10.1016/j.trac.2011.04.021

    Article  CAS  Google Scholar 

  17. Bendicho C, Lavilla I, Pena-Pereira F, Romero V (2012) Green chemistry in analytical atomic spectrometry: a review. J Anal At Spectrom 27:1831–1857. doi:10.1039/c2ja30214d

    Article  CAS  Google Scholar 

  18. Viera MA, Ribeiro AS, Curtius AJ, Sturgeon RE (2007) Determination of total mercury and methylmercury in biological samples by photochemical vapor generation. Anal Bioanal Chem 388:837–847. doi:10.1007/s00216-007-1194-2

    Article  Google Scholar 

  19. Bendl RF, Madden JT, Regan AL, Fitzgerald N (2006) Mercury determination by cold vapor atomic absorption spectrometry utilizing UV photoreduction. Talanta 68:1366–1370. doi:10.1016/j.talanta.2005.07.061

    Article  CAS  Google Scholar 

  20. López-Rouco A, Stanisz E, Matusiewicz H, Bendicho C (2008) J Anal At Spectrom 23:1026–1029. doi:10.1039/b802612b

    Article  Google Scholar 

  21. Gil S, Costas M, Pena F, De La Calle I, Cabaleiro N, Lavilla I, Bendicho C (2012) On-line UV photoreduction in a flow-injection/stopped-flow manifold for determination of mercury by cold vapour-atomic absorption spectrometry. Anal Methods 2:1798–1802. doi:10.1039/cOay00326c

    Article  Google Scholar 

  22. Zheng C, Li Y, He Y, Ma Q, Hou X (2005) Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water. J Anal At Spectrom 20:746–750. doi:10.1039/b503727a

    Article  CAS  Google Scholar 

  23. Li HM, Zhang Y, Zheng CB, Wu L, Lv Y, Hou X (2006) UV irradiation controlled vapor generation using SnCl2 as reductant for mercury speciation. Anal Sci 22:1361–1365. doi:10.2116/analsci.22.1361

    Article  CAS  Google Scholar 

  24. Yin Y, Liang J, Yang L, Wang Q (2007) Vapour generation at a UV/TiO2 photocatalyst reaction device for determination and speciation of mercury by AFS and HPLC-AFS. J Anal At Spectrom 22:330–334. doi:10.1039/b614555h

    Article  CAS  Google Scholar 

  25. Yin Y, Qiu J, Yang L, Wang Q (2007) A new vapor generation system for mercury species based on the UV irradiation of mercaptoethanol used in the determination of total and methyl mercury in environmental and biological samples by atomic fluorescence spectrometry. Anal Bioanal Chem 388:831–836. doi:10.1007/s00216-007-1122-5

    Article  CAS  Google Scholar 

  26. Li Y, Zheng C, Ma Q, Wu L, Hu C, Hou X (2006) Sample matrix-assisted photo-induced chemical vapor generation: a reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples. J Anal At Spectrom 21:82–85. doi:10.1039/b512198a

    Article  CAS  Google Scholar 

  27. Han A, Zheng C, Wang J, Cheng G, Lv Y, Hou X (2007) Photo-induced cold vapor generation with low molecular weight alcohol, aldehyde, or carboxylic acid for atomic fluorescence spectrometric determination of mercury. Anal Bioanal Chem 388:825–830. doi:10.1007/s00216-006-1006-0

    Article  CAS  Google Scholar 

  28. Guo X, Sturgeon RE, Mester Z, Gardner GJ (2004) Vapor generation by UV irradiation for sample introduction with atomic spectrometry. Anal Chem 76:2401–2405. doi:10.1021/ac0353536

    Article  CAS  Google Scholar 

  29. Wu L, Zheng C, Ma Q, Hu C, Hou X (2007) Chemical vapor generation for determination of mercury by inductively coupled plasma mass spectrometry. Appl Spectrosc Rev 42:79–102. doi:10.1080/05704920601184234

    Article  CAS  Google Scholar 

  30. Madden JT, Fitzgerald N (2009) Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury. Spectrochim Acta Part B 64:925–927. doi:10.1016/j.sab.2009.08.002

    Article  Google Scholar 

  31. Romero V, Costas-Mora I, Lavilla I, Bendicho C (2015) Facile preparation of an immobilized surfactant-free palladium nanocatalyst for metal hydride trapping: a novel sensing platform for TXRF analysis. Nanoscale 7:1994–2002. doi:10.1039/c4nr05755d

    Article  CAS  Google Scholar 

  32. Brezonik PL, Arnold WA (2011) Inorganic chemical composition of natural waters: elements of aqueous geochemistry. In: Brezonik PL, Arnold WA (eds) Water chemistry. An introduction to the chemistry of natural and engineered aquatic systems. Oxford University Press, New York, pp 41–75

    Google Scholar 

  33. Koulouridakis PE, Kallithrakas-Kontos NG (2004) Selective mercury determination after membrane complexation and total reflction X-ray fluorescence analysis. Anal Chem 76:4315–4319. doi:10.1021/ac049780a

    Article  CAS  Google Scholar 

  34. Aretaki IN, Koulouridakis P, Kallithrakas-Kontos N (2006) Total reflection X-ray fluorescence mercury analysis after immobilization on quartz surfaces. Anal Chim Acta 562:252–257. doi:10.1016/j.aca.2006.01.084

    Article  CAS  Google Scholar 

  35. Marguí E, Kregsamer P, Hidalgo M, Tapias J, Queralt I, Streli C (2010) Analytical approaches for Hg determination in wastewater samples by means of total reflection x-ray fluorescence spectrometry. Talanta 82:821–827. doi:10.1016/j.talanta.2010.02.066

    Article  Google Scholar 

  36. Holtkamp M, Elseberg T, Wehe CA, Sperling M, Karst U (2013) Complexation and oxidation strategies for improved TXRF determination of mercury in vaccines. J Anal At Spectrom 28:719–723. doi:10.1039/c3ja00002h

    Article  CAS  Google Scholar 

  37. Custo G, Litter MI, Rodriguez D, Vazquez C (2006) Total reflection X-ray fluorescence trace mercury determination by trapping complexation: Application in advanced oxidation technologies. Spectrochim Acta Part B 61:1119–1123. doi:10.1016/j.sab.2006.05.012

    Article  Google Scholar 

Download references

Acknowledgments

The Spanish Ministry of Economy and Competitiveness (Project CTQ2012-32788) and the European Commission (FEDER) is gratefully acknowledged. The Spanish Ministry of Education, Culture and Sport is acknowledged for financial support through a FPU predoctoral grant to V. Romero.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bendicho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, V., Gryglicka, M., De La Calle, I. et al. Ultrasensitive determination of mercury in waters via photochemical vapor deposition onto quartz substrates coated with palladium nanoparticles followed by total reflection X-ray fluorescence analysis. Microchim Acta 183, 141–148 (2016). https://doi.org/10.1007/s00604-015-1612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1612-7

Keywords

Navigation