Skip to main content
Log in

Efficiency of optimization algorithms on the adjustment of process parameters for geometric accuracy enhancement of denture plate in single point incremental sheet forming

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Single point incremental forming is a sheet metal forming technique with great potential for use in prototyping and custom manufacture. Although this technology has undergone considerable development in recent years, it still suffers from low geometrical accuracy in terms of its application in the industry. Therefore, solutions for errors reduction or compensation are required to improve the process. In this paper, an optimization procedure of the geometric precision, based on genetic algorithm, global optimum determination by linking and interchanging kindred evaluators solver and newly developed algorithm called grasshopper optimization algorithm, is tested and doubly validated numerically and experimentally. The denture plate part simultaneously simulated and manufactured shows how it is possible to obtain sound component with reduced geometric errors such as springback, bending and pillow effect errors by properly chosen optimal process parameters. The results indicated that the reduction in the shape defects between the obtained geometry and the target model generated by computer-aided design can be achieved through coupling of numerical simulations and optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

ISF:

Incremental sheet forming

SPIF:

Single point incremental forming

CAD/CAM:

Computer-aided design/computer-aided manufacturing

DICOM:

Digital image and communications in medicine

CT:

Computerized tomography

PCL:

Polycaprolactone

MARS:

Multivariate adaptive regression splines

MPC:

Model predictive control

RSM:

Response surface methodology

FE:

Finite element

DoE:

Design of the experiments

BBD:

Box–Behnken design of experiments

ANOVA:

Analysis of variance

GAs:

Genetic algorithms

MaxGen:

Maximum number of generations

GODLIKE:

Global optimum determination by linking and interchanging kindred evaluators

POF:

Pareto optimal frontier

GA:

Genetic algorithm

DE:

Differential evolution

PSO:

Particle swarm optimization

ASA:

Adaptive simulated annealing

GOA:

Grasshopper optimization algorithm

SOOP:

Single-objective optimization problems

MOOP:

Multi-objective optimization problems

MOGA:

Multi-objective genetic algorithm

References

  1. Schuh G, Prote J, Dany S, Cremer S, Molitor M (2017) Classification of a hybrid production infrastructure in a learning factory morphology. Proc Manuf 9:17–24. https://doi.org/10.1016/j.promfg.2017.04.007

    Article  Google Scholar 

  2. Ambrogio G, De Napoli L, Filice L, Gagliardi F, Muzzupappa M (2005) Application of incremental forming process for high customised medical product manufacturing. J Mater Process Technol 162–163:156–162. https://doi.org/10.1016/j.jmatprotec.2005.02.148

    Article  Google Scholar 

  3. Boulila A, Ayadi M, Marzouki S, Bouzidi S (2017) Contribution to a biomedical component production using incremental sheet forming. Int J Adv Manuf Technol 95(5–8):2821–2833. https://doi.org/10.1007/s00170-017-1397-4

    Article  Google Scholar 

  4. Sbayti M, Ghiotti A, Bahloul R, Belhadjsalah H, Bruschi S (2016) Finite element analysis of hot single point incremental forming of hip prostheses. MATEC Web Conf 80(14006):1–7. https://doi.org/10.1051/matecconf/20168014006

    Article  Google Scholar 

  5. Hirt G, Ames J, Bambach M, Kopp R (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 53:203–206. https://doi.org/10.1016/S0007-8506(07)60679-9

    Article  Google Scholar 

  6. Bahloul R, Arfa H, Belhadjsalah H (2011) Process analysis based on experimental tests and numerical modelling of single point incremental forming of sheet metal: effect of the principal process parameters. In: Proceedings of the XI international conference on computational plasticity (COMPLAS). Barcelona

  7. Governale A, Lo Franco A, Panzeca A et al (2007) Incremental forming process for the accomplishment of automotive details. Key Eng Mater 344:559–566. https://doi.org/10.4028/www.scientific.net/KEM.344.559

    Article  Google Scholar 

  8. Hussain G, Khan HR, Gao L, Hayat N (2013) Guidelines for tool-size selection for single-point incremental forming of an aerospace alloy. Mater Manuf Process 28(3):324–329. https://doi.org/10.1080/10426914.2012.700151

    Article  Google Scholar 

  9. Lu B, Ou H, Shi SQ, Long H, Chen J (2016) Titanium based cranial reconstruction using incremental sheet forming. Int J Mater Form 9:361–370. https://doi.org/10.1007/s12289-014-1205-8

    Article  Google Scholar 

  10. Araújo R, Teixeira P, Montanari L, Reis A, Silva MB, Martins PAF (2014) Single point incremental forming of a facial implant. Prosthet Orthot Int 38:369–378. https://doi.org/10.1177/0309364613502071

    Article  Google Scholar 

  11. Castelan J, Schaeffer L, Daleffe A et al (2014) Manufacture of custom-made cranial implants from DICOM® images using 3D printing, CAD/CAM technology and incremental sheet forming. Rev Bras Eng Biomed 30:265–273. https://doi.org/10.1590/rbeb.2014.024

    Article  Google Scholar 

  12. Duflou JR, Behera AK, Vanhove H, Bertol LS (2013) Manufacture of accurate titanium cranio-facial implants with high forming angle using single point incremental forming. Key Eng Mater 549:223–230. https://doi.org/10.4028/www.scientific.net/KEM.549.223

    Article  Google Scholar 

  13. Fiorentino A, Marenda GP, Marzi R, Ceretti E, Kemmoku DT, Lopes da Silva JV (2012) Rapid prototyping techniques for individualized medical prosthesis manufacturing. In: Proceedings of the 5th international conference on advanced research in virtual and rapid prototyping, vol 1, pp 589–594. https://doi.org/10.1201/b11341-94

  14. Fiorentino A, Attanasio A, Marzi R, Ceretti E, Giardini C (2011) On forces, formability and geometrical error in metal incremental sheet forming. Int J Mater Prod Tec. https://doi.org/10.1504/IJMPT.2011.039936

    Article  Google Scholar 

  15. Attanasio A, Ceretti E, Giardini C, Mazzoni L (2007) Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization. J Mater Process Technol 197:59–67. https://doi.org/10.1016/j.jmatprotec.2007.05.053

    Article  Google Scholar 

  16. Li Y, Lu H, Daniel WJT, Meehan PA (2015) Investigation and optimization of deformation energy and geometric accuracy in the incremental sheet forming process using response surface methodology. Int J Adv Manuf Technol 79:2041–2055. https://doi.org/10.1007/s00170-015-6986-5

    Article  Google Scholar 

  17. Taleb Araghi B, Manco GL, Bambach M, Hirt G (2009) Investigation into a new hybrid forming process: incremental sheet forming combined with stretch forming. CIRP Ann Manuf Technol 58:225–228. https://doi.org/10.1016/j.cirp.2009.03.101

    Article  Google Scholar 

  18. Taleb Araghi B, Göttmann A, Bambach M, Hirt G, Bergweiler G, Diettrich J, Steiners M, Saeed-akbari A (2011) Review on the development of a hybrid incremental sheet forming system for small batch sizes and individualized production. Prod Eng Res Dev 5:393–404. https://doi.org/10.1007/s11740-011-0325-y

    Article  Google Scholar 

  19. Ambrogio G, De Napoli L, Filice L (2009) A novel approach based on multiple back-drawing incremental forming to reduce geometry deviation. Int J Mater Form 2:9–12. https://doi.org/10.1007/s12289-009-0498-5

    Article  Google Scholar 

  20. Allwood JM, Braun D, Music O (2010) The effect of partially cut-out blanks on geometric accuracy in incremental sheet forming. J Mater Process Technol 210:1501–1510. https://doi.org/10.1016/j.jmatprotec.2010.04.008

    Article  Google Scholar 

  21. Bambach M, Taleb Araghi B, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Prod Eng Res Dev 3:145–156. https://doi.org/10.1007/s11740-009-0150-8

    Article  Google Scholar 

  22. Lu B, Chen J, Ou H, Cao J (2013) Feature-based tool path generation approach for incremental sheet forming process. J Mater Process Technol 213:1221–1233. https://doi.org/10.1016/j.jmatprotec.2013.01.023

    Article  Google Scholar 

  23. Behera AK, Verbert J, Lauwers B, Duflou JR (2013) Tool path compensation strategies for single point incremental sheet forming using multivariate adaptive regression splines. CAD Comput Aided Des 45:575–590. https://doi.org/10.1016/j.cad.2012.10.045

    Article  Google Scholar 

  24. Malhotra R, Bhattacharya A, Kumar A, Reddy NV, Cao J (2011) A new methodology for multi-pass single point incremental forming with mixed toolpaths. CIRP Ann Manuf Technol 60:323–326. https://doi.org/10.1016/j.cirp.2011.03.145

    Article  Google Scholar 

  25. Behera AK, Lauwers B, Duflou JR (2015) Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques. Int J Mater Form 8:517–532. https://doi.org/10.1007/s12289-014-1174-y

    Article  Google Scholar 

  26. Junchao L, Junjian S, Bin W (2013) A multipass incremental sheet forming strategy of a car taillight bracket. Int J Adv Manuf Technol 69:2229–2236. https://doi.org/10.1007/s00170-013-5179-3

    Article  Google Scholar 

  27. Fu Z, Mo J, Han F, Gong P (2013) Tool path correction algorithm for single-point incremental forming of sheet metal. Int J Adv Manuf Technol 64:1239–1248. https://doi.org/10.1007/s00170-012-4082-7

    Article  Google Scholar 

  28. Fiorentino A, Giardini C, Ceretti E (2015) Application of artificial cognitive system to incremental sheet forming machine tools for part precision improvement. Precis Eng 39:167–172. https://doi.org/10.1016/j.precisioneng.2014.08.005

    Article  Google Scholar 

  29. Allwood JM, Music O, Raithathna A, Duncan SR (2009) Closed-loop feedback control of product properties in flexible metal forming processes with mobile tools. CIRP Ann Manuf Technol 58:287–290. https://doi.org/10.1016/j.cirp.2009.03.065

    Article  Google Scholar 

  30. Hao W, Duncan S (2011) Constrained model predictive control of an incremental sheet forming process. In: IEEE international conference on control applications (CCA). https://doi.org/10.1109/CCA.2011.6044466

  31. Lu H, Kearney M, Wang C, Liu S, Meehan PA (2017) Part accuracy improvement in two point incremental forming with a partial die using a model predictive control algorithm. Precis Eng 49:179–188. https://doi.org/10.1016/j.precisioneng.2017.02.006

    Article  Google Scholar 

  32. Bahloul R, Arfa H, BelHadjSalah H (2014) A study on optimal design of process parameters in single point incremental forming of sheet metal by combining Box–Behnken design of experiments, response surface methods and genetic algorithms. Int J Adv Manuf Technol 74:163–185. https://doi.org/10.1007/s00170-014-5975-4

    Article  Google Scholar 

  33. Bahloul R, Arfa H, BelHadjSalah H (2013) Application of response surface analysis and genetic algorithm for the optimization of single point incremental forming process. Key Eng Mater 554–557:1265–1272. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1265

    Article  Google Scholar 

  34. Ponthot JP, Kleinermann JP (2006) A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation. Comput Methods Appl Mech Eng 195:5472–5508. https://doi.org/10.1016/j.cma.2005.11.012

    Article  MATH  Google Scholar 

  35. Ceretti E, Giardini C, Attanasio A (2004) Experimental and simulative results in sheet incremental forming on CNC machines. J Mater Proc Technol 152:176–184. https://doi.org/10.1016/j.jmatprotec.2004.03.024

    Article  Google Scholar 

  36. Esmaeilpour R, Kim H, Park T, Pourboghrat F, Xu Z, Mohammed B, Abu-Farha F (2018) Calibration of Barlat Yld2004–18P yield function using CPFEM and 3D RVE for the simulation of single point incremental forming (SPIF) of 7075-O aluminum sheet. Int J Mech Sci 145:24–41. https://doi.org/10.1016/j.ijmecsci.2018.05.015

    Article  Google Scholar 

  37. Sbayti M, Bahloul R, Belhadjsalah H, Zemzemi F (2018) Optimization techniques applied to single point incremental forming process for biomedical application. Int J Adv Manuf Technol 95:1789–1804. https://doi.org/10.1007/s00170-017-1305-y

    Article  Google Scholar 

  38. Arfa H, Bahloul R, Belhadjsalah H (2015) Multiobjective optimization problem of dieless incremental forming. Key Eng Mater 651–653:1078–1083. https://doi.org/10.4028/www.scientific.net/KEM.651-653.1078

    Article  Google Scholar 

  39. Khan MS, Coenen F, Dixon C, El-Salhi S, Penalva M, Rivero A (2015) An intelligent process model: predicting springback in single point incremental forming. Int J Adv Manuf Technol 76:2071–2082. https://doi.org/10.1007/s00170-014-6431-1

    Article  Google Scholar 

  40. Isidore BBL, Hussain G, Shamchi SP, Khan WA (2016) Prediction and control of pillow defect in single point incremental forming using numerical simulations. J Mech Sci Technol 30:2151–2161. https://doi.org/10.1007/s12206-016-0422-0

    Article  Google Scholar 

  41. Kumar PM, Gandhi UD (2017) Enhanced DTLS with CoAP-based authentication scheme for the internet of things in healthcare application. J Supercomput. https://doi.org/10.1007/s11227-017-2169-5

    Article  Google Scholar 

  42. Kumar PM, Devi GU, Manogaran G, Sundarasekar R, Chilamkurti N, Varatharajan R (2018) Ant colony optimization algorithm with internet of vehicles for intelligent traffic control system. Comput Netw 144:154–162. https://doi.org/10.1016/j.comnet.2018.07.001

    Article  Google Scholar 

  43. Kumar PM, Gandhi UD (2018) A novel three-tier internet of things architecture with machine learning algorithm for early detection of heart diseases. Comput Electr Eng 65:222–235. https://doi.org/10.1016/j.compeleceng.2017.09.001

    Article  Google Scholar 

  44. Kumar PM, Lokesh S, Varatharajan R, Babu GC, Parthasarathy P (2018) Cloud and IoT based disease prediction and diagnosis system for healthcare using fuzzy neural classifier. Future Gener Comput Syst 86:527–534. https://doi.org/10.1016/j.future.2018.04.036

    Article  Google Scholar 

  45. Varatharajan R, Manogaran G, Priyan MK, Balaş VE, Barna C (2018) Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis. Multimed Tools Appl 77:17573–17593. https://doi.org/10.1007/s11042-017-4768-9

    Article  Google Scholar 

  46. Priyan MK, Devi GU (2018) Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Comput 21:213–227. https://doi.org/10.1007/s10586-017-0998-x

    Article  Google Scholar 

  47. Manogaran G, Varatharajan R, Lopez D, Kumar PM, Sundarasekar R, Thota C (2018) A new architecture of internet of things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Gener Comput Syst 82:375–387. https://doi.org/10.1016/j.future.2017.10.045

    Article  Google Scholar 

  48. Lokesh S, Kumar PM, Devi MR, Parthasarathy P, Gokulnath CB (2018) An automatic tamil speech recognition system by using bidirectional recurrent neural network with self-organizing map. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3466-5

    Article  Google Scholar 

  49. Pawlewski P (2012) Petri nets—manufacturing and computer science. IntechOpen Publisher, Rijeka. https://doi.org/10.5772/2578

    Book  Google Scholar 

  50. Malhotra R, Cao J, Ren F, Kiridena V, Xia ZC, Reddy NV (2011) Improvement of geometric accuracy in incremental forming by using a squeezing toolpath strategy with two forming tools. J Manuf Sci Eng 133:061019. https://doi.org/10.1115/1.4005179

    Article  Google Scholar 

  51. Malyer E (2013) The influence of toolpath strategy on geometric accuracy in incremental forming. Key Eng Mater 554–557:1351–1361. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1351

    Article  Google Scholar 

  52. Störkle DD, Seim P, Thyssen L, Kuhlenkötter B (2016) Influence of part orientation on the geometric accuracy in robot-based incremental sheet metal forming. AIP Conf Proc 1769:070002. https://doi.org/10.1063/1.4963455

    Article  Google Scholar 

  53. Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475. https://doi.org/10.1080/00401706.1960.10489912

    Article  MathSciNet  Google Scholar 

  54. Bahloul R (2011) Optimisation of process parameters in flanging operation in order to minimise stresses and Lemaitre’s damage. Mater Des 32(1):108–120. https://doi.org/10.1016/j.matdes.2010.06.028

    Article  Google Scholar 

  55. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc 13:1–45

    MathSciNet  MATH  Google Scholar 

  56. Petersen RG (1985) Design and analysis of experiments. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  57. Roy K, Kar S, Narayan Das R (2015) A primer on QSAR/QSPR modeling: fundamental concepts. Springer, Berlin. https://doi.org/10.1007/978-3-319-17281-1

    Book  Google Scholar 

  58. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Longman Publishing Co., Inc., Boston

    MATH  Google Scholar 

  59. Fonseca CM, Fleming PJ (1993) Multiobjective genetic algorithm. In: Proceedings of IEE colloquium on genetic algorithms for control systems engineering, vol 6, pp 1–5 (Digest No. 1993/130). London

  60. Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evol Comput 3(1):1–16. https://doi.org/10.1162/evco.1995.3.1.1

    Article  Google Scholar 

  61. Gen M, Cheng R (2000) Genetic algorithms and engineering optimization. Wiley, New York

    Google Scholar 

  62. Oldenhuis R (2017) GODLIKE—a robust single-& multi-objective optimizer—file exchange—MATLAB central. www.mathworks.it/matlabcentral/fileexchange/24838-godlike-a-robust-single-multi-objective-optimizer. Accessed 1 Jan 2017

  63. Narkhede MS, Chatterji S, Ghosh S (2015) Comparative analysis of ev-moga and godlike multiobjective evolutionary algorithms for risk based optimal power scheduling of a virtual power plant. ICTACT J Soft Comput 5:917–924. https://doi.org/10.21917/ijsc.2015.0129

    Article  Google Scholar 

  64. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  65. Neve AG, Kakandikar GM, Kulkarni O (2017) Application of grasshopper optimization algorithm for constrained and unconstrained test functions. Int J Swarm Intel Evol Comput 6(3):1–7. https://doi.org/10.4172/2090-4908.1000165

    Article  Google Scholar 

  66. Saremi S, Mirjalili S, Mirjalili S, Dong JS (2020) Grasshopper optimization algorithm: theory, literature review, and application in hand posture estimation. In: Mirjalili S, Dong JS, Lewis A (eds) Nature-inspired optimizers. Studies in computational intelligence, vol 811. Springer, Cham, pp 107–122. https://doi.org/10.1007/978-3-030-12127-3_7

    Chapter  Google Scholar 

  67. Aragón AM, Wayer JK, Geubelle PH, Goldberg DE, White SR (2008) Design of microvascular flow networks using multi-objective genetic algorithms. Comput Methods Appl Mech Eng 197(49–50):4399–4410. https://doi.org/10.1016/j.cma.2008.05.025

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Faculty of Dental Medicine of Monastir, Tunisia for providing the original denture plate prosthesis and the German Research Foundation DFG for the kind support within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries.” Furthermore, the authors thank the Institute of Metal Forming of RWTH Aachen University for their support in the performance and evaluation of the incremental sheet forming experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedi Belhadjsalah.

Ethics declarations

Conflict of interest

Authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbayti, M., Bahloul, R. & Belhadjsalah, H. Efficiency of optimization algorithms on the adjustment of process parameters for geometric accuracy enhancement of denture plate in single point incremental sheet forming. Neural Comput & Applic 32, 8829–8846 (2020). https://doi.org/10.1007/s00521-019-04354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04354-y

Keywords

Navigation