Skip to main content
Log in

Neural networks ensemble for automatic DNA microarray spot classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this work, a new step for the DNA microarray image analysis pipeline is proposed using neural computing techniques. We perform the classification of the spots into morphology-derived classes in order to assist the segmentation procedure that is traditionally performed after the gridding process. Our method consists of extracting multiple features from each individual spot area (or cell—derived from the gridding process) that are then reduced to a presumably optimal subset using a feature selection process, the sequential forward selection algorithm. Classification is then realized by means of a neural network ensemble with a tree-like structure, made up of seven multi-layer perceptron networks. The architecture of each neural network has been obtained through an exhaustive automatic searching process that optimizes the size of the network as a function of the classification error rate. The neural ensemble classifier is tested on two sub-grids extracted from real microarray DNA images and is shown to achieve high accuracy rates over the seven different classes of spot. In addition, a dataset with more than 1000 samples of classes of spot has been generated and made freely available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Available at https://puma.princeton.edu/.

  2. Available at http://smd.princeton.edu/.

  3. Available at http://new.litrp.cl/index.php/data-repository.

  4. Available at http://dmery.ing.puc.cl/index.php/balu.

  5. Available at http://www.litrp.cl.

References

  1. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37

    Article  Google Scholar 

  2. Alpaydin E (2004) Introduction to machine learning (Adaptive computation and machine learning series). The MIT Press, Cambridge

    MATH  Google Scholar 

  3. Angulo J (2008) Polar modelling and segmentation of genomic microarray spots using mathematical morphology. Image Anal Stereol 27(2):107–124

    Article  MathSciNet  Google Scholar 

  4. Angulo J, Serra J (2003) Automatic analysis of DNA microarray images using mathematical morphology. Bioinformatics 19:2003

    Article  Google Scholar 

  5. Schumacher S, Muekusch S, Seitz H (2015) Up-to-date applications of microarrays and their way to commercialization. Microarrays 4(2):196–213

    Article  Google Scholar 

  6. Draghici S (2003) Data analysis tools for DNA microarrays. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  7. Álvarez-Ramos C, Nino E, Santos M (2013) Automatic classification of Nosema pathogenic agents through machine vision techniques and kernel based vector machines. In: Computing Colombian conference (8CCC). IEEE, pp 1–5

  8. Wang Z, Zineddin B, Liang J, Zeng N, Li Y, Du M, Cao J, Liu X (2013) A novel neural network approach to cDNA microarray image segmentation. Comput Methods Programs Biomed 111(1):189–198

    Article  Google Scholar 

  9. Li Q, Fraley C, Bumgarner RE, Yeung KY, Raftery AE (2005) Donuts, scratches and blanks: robust model-based segmentation of microarray images. Bioinformatics 21(12):2875–2882

    Article  Google Scholar 

  10. Yang Y, Stafford P, Kim Y (2011) Segmentation and intensity estimation for microarray images with saturated pixels. BMC Bioinformatics 12(1):1–11

    Article  Google Scholar 

  11. Glasbey CA, Forster T, Ghazal P (2007) Estimation of expression levels in spotted microarrays with saturated pixels. Stat Appl Genet Mol Biol 6(1):1–15

    Article  MathSciNet  Google Scholar 

  12. Bozinov D, Rahnenfuhrer J (2002) Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering. Bioinformatics 18(5):747–756

    Article  Google Scholar 

  13. Giannakeas N, Karvelis PS, Exarchos TP, Kalatzis FG, Fotiadis DI (2013) Segmentation of microarray images using pixel classification—comparison with clustering-based methods. Comput Biol Med 43(6):705–716

    Article  Google Scholar 

  14. Daskalakis A, Cavouras D, Bougioukos P, Kostopoulos S, Georgiadis P, Kalatzis I, Nikiforidis G (2007) Effective quantification of gene expression levels in microarray images using a spot-adaptive compound clustering-enhancement-segmentation scheme. In Computational science and its applications–ICCSA 2007. Springer, Berlin, pp 555–565

  15. Shao G, Li T, Zuo W, Wu S, Liu T (2015) A combinational clustering based method for cDNA microarray image segmentation. PLoS ONE 10(8):e0133025

    Article  Google Scholar 

  16. Belean B, Borda M, Ackermann J, Koch I, Balacescu O (2015) Unsupervised image segmentation for microarray spots with irregular contours and inner holes. BMC Bioinformatics 16(1):412

    Article  Google Scholar 

  17. Biju VG, Mythili P (2015) Fuzzy clustering algorithms for cDNA microarray image spots segmentation. Procedia Comput Sci 46:417–424

    Article  Google Scholar 

  18. Zhao Y, Wang G, Yin Y, Li Y, Wang Z (2016) Improving ELM-based microarray data classification by diversified sequence features selection. Neural Comput Appl 27(1):155–166

    Article  Google Scholar 

  19. Nanni L, Lumini A, Brahnam S (2010) Advanced machine learning techniques for microarray spot quality classification. Neural Comput Appl 19(3):471–475

    Article  MATH  Google Scholar 

  20. Garro BA, Rodríguez K, Vázquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560

    Article  Google Scholar 

  21. Wang Z, Zineddin B, Liang J, Zeng N, Li Y, Du M, Liu X (2014) cDNA microarray adaptive segmentation. Neurocomputing 142:408–418

    Article  Google Scholar 

  22. Wu H, Wang L, Zhang F, Wen Z (2015) Automatic leaf recognition from a big hierarchical image database. Int J Intell Syst 30(8):871–886

    Article  Google Scholar 

  23. Alhadidi B, Fakhouri HN, AlMousa OS (2006) cDNA Microarray genome image processing using fixed spot position. Am J Appl Sci 3(2):1730–1734

    Article  Google Scholar 

  24. Santos M, Cantos A (2010) Classification of plasma signals by genetic algorithms. Fusion Sci Technol 58(2):706–713

    Article  Google Scholar 

  25. Vergara JR, Estévez PA (2014) A review of feature selection methods based on mutual information. Neural Comput Appl 24(1):175–186

    Article  Google Scholar 

  26. Mery D, Pedreschi F, Soto A (2013) Automated design of a computer vision system for visual food quality evaluation. Food Bioprocess Technol 6(8):2093–2108

    Article  Google Scholar 

  27. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  28. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  29. Gonzalez R, Woods R (2008) Digital image processing, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  30. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

    Article  MATH  Google Scholar 

  31. Funahashi KI (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2(3):183–192

    Article  Google Scholar 

  32. Peláez J, Doña J, Fornari J, Serra G (2014) Ischemia classification via ECG using MLP neural networks. Int J Comput Intell Syst 7(2):344–352

    Article  Google Scholar 

  33. Foresee FD, Hagan MT (1997) Gauss–Newton approximation to Bayesian learning. In International conference on neural networks, 1997, vol 3. IEEE, pp 1930–1935

  34. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  Google Scholar 

  35. Daskalakis A, Glotsos D, Kostopoulos S, Cavouras D, Nikiforidis G (2009) A comparative study of individual and ensemble majority vote cDNA microarray image segmentation schemes, originating from a spot-adjustable based restoration framework. Comput Methods Programs Biomed 95(1):72–88

    Article  Google Scholar 

  36. Athanasiadis E, Cavouras D, Kostopoulos S, Glotsos D, Kalatzis I, Nikiforidis G (2011) A wavelet-based Markov random field segmentation model in segmenting microarray experiments. Comput Methods Programs Biomed 104(3):307–315

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the resources made available by the “Laboratorio de Investigaciones Tecnológicas en Reconocimiento de Patrones”, Universidad Católica del Maule, Talca, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Thomas, J.C., Mora, M. & Santos, M. Neural networks ensemble for automatic DNA microarray spot classification. Neural Comput & Applic 31, 2311–2327 (2019). https://doi.org/10.1007/s00521-017-3190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3190-6

Keywords

Navigation