Skip to main content
Log in

Danger theory based artificial immune system solving dynamic constrained single-objective optimization

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an artificial immune system (AIS) based on the danger theory in immunology for solving dynamic nonlinear constrained single-objective optimization problems with time-dependent design spaces. Such proposed AIS executes orderly three modules—danger detection, immune evolution and memory update. The first module identifies whether there are changes in the optimization environment and decides the environmental level, which helps for creating the initial population in the environment and promoting the process of solution search. The second module runs a loop of optimization, in which three sub-populations each with a dynamic size seek simultaneously the location of the optimal solution along different directions through co-evolution. The last module stores and updates the memory cells which help the first module decide the environmental level. This optimization system is an on-line and adaptive one with the characteristics of simplicity, modularization and co-evolution. The numerical experiments and the results acquired by the nonparametric statistic procedures, based on 22 benchmark problems and an engineering problem, show that the proposed approach performs globally well over the compared algorithms and is of potential use for many kinds of dynamic optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aragón VS, Esquivel SC (2008) Optimizing constrained problems through a T-Cell. J Comput Sci Technol 8(3):158–165

    Google Scholar 

  • Basu SK, Bhatia AK (2006) A naive genetic approach for non-stationary constrained problems. Soft Comput 10:152–162

    Article  Google Scholar 

  • Bendtsen CN, Krink T (2002) Dynamic memory model for non-stationary optimization. In: Congress on evolutionary computation. IEEE Press, New York, pp 145–150

  • Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Sci Agric 169:1042–1049

    Article  Google Scholar 

  • Bui LT, Abbass HA, Branke J (2005) Multiobjective optimization for dynamic environments. Evol Comput 3:2349–2356

    Google Scholar 

  • de Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer, Berlin

  • Cobb H (1990) An investigation into the use of hypermutation as adaptive operator in genetic algorithms having continues, time dependent nonstationary environments. NRL Memorandum Report 6760 (NCALAI report AIC-90-001), Washington,DC

  • Dasgupta D, Yu S, Nino F (2011) Recent advances in artificial immune systems: models and applications. Applied Soft Comput 11(2):1574–1587

    Article  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistic tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1:13–18

    Article  Google Scholar 

  • Euchi J, Chabchoub H, Yassine A (2011) New evolutionary algorithm based on 2-Opt local search to solve the vehicle routing problem with private fleet and common carrier. Appl Metaheuristic Comput 2(1):58–82

    Article  Google Scholar 

  • Fogel JM, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulate evolution. Wiley, New York

  • Gaspar A, Collard P (1999) From GAs to artificial immune systems: improving adaptation in time dependent optimization. 1999 Congress Evolut Comput 3:1859–1866

  • Grefenstette JJ (1992) Genetic algorithms for changing environments. In: Manner R, Manderick B (eds) Parallel problem solving from nature (PPSN-2), Brussels, pp 137–144

  • Hart E, Timmis J (2008) Application areas of AIS: the past, present and the future. Applied Soft Comput 8(1):191–201

    Article  Google Scholar 

  • Hart E, Timmis J (2008) Application areas of AIS: the past, present and the puture. J Appl Soft Comput 8(1):191–201

    Article  Google Scholar 

  • Huang XY, Zhang ZH, He CJ et al (2005) Modern intelligent algorithms: theory and applications. Science Press, Beijing

  • Iqbal A (2006) Danger theory metaphor in artificial immune system for system call data. PhD thesis, Universiti Teknologi Malaysia

  • Jin YC, Branke J (2005) Evolutionary optimization in uncertain environments: a survey. IEEE Trans Evol Comput 9(3):303–317

    Article  Google Scholar 

  • Lafferty KJ, Cunningham A (1975) A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 53:27–42

    Article  Google Scholar 

  • Lederberg J (1959) Genes and antibodies. Sci Agric 129:1649–1653

    Article  Google Scholar 

  • Liang JJ, Runarsson TP, Mezura-Montes E et al (2006) Problem definitions and evaluation criteria for the CEC 2006. Special session on constrained real-parameter optimization, Technical Report. Nanyang Technological University, Singapore

  • Lung RI, Dumitrescu D (2010) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput 9:83–94

    Article  MATH  MathSciNet  Google Scholar 

  • Luo Y, Li R, Zhang W (2005) Dynamic function optimization algorithm based on immune mechanism. J Xi’an Traffic Univ 39(4):384–388 (in Chinese)

    Google Scholar 

  • Mallipeddi R, Suganthan PN (2010) Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization, Technical Report. Nanyang Technological University, Singapore

  • Matzinger P (2002) The danger model: a renewed sense of Self. Sci Technol Human Values 296:301–305

    Article  Google Scholar 

  • Mezura-Montes E, Coello Coello CA (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evolut Comput 1(4):173–194

    Article  Google Scholar 

  • Nguyen TT, Yao X (2009) Benchmarking and solving dynamic constrained problems. In: Proceedings of the IEEE Congress on Evolutionary Computation CEC2009, Trondheim, Norway, pp 690–697

  • Peng X, Gao XG, Yang SX (2011) Environment identification-based memory scheme for estimation of distribution algorithms in dynamic environments. Soft Comput 15:311–326

    Article  Google Scholar 

  • Rezvanian A, Meybodi MR (2010) Tracking extrema in dynamic environments using a learning automata-based immune algorithm. Grid Distrib Comput Control Autom Commun Comput Inf Sci 121:216–225

    Google Scholar 

  • Simões A, Costa E (2011) CHC-based algorithms for the dynamic traveling salesman problem. Appl Evolut Comput Lecture Notes Comput Sci 6624:354–363

    Article  Google Scholar 

  • Simões A, Costa E (2007) Variable-size memory evolutionary algorithm to deal with dynamic environments. In: Giacobini M et al (eds) EvoWorkshops 2007, LNCS 4448, pp 617–626

  • Singh HK, Isaacs A, Nguyen TT et al (2009) Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation CEC2009, Trondheim, Norway, pp 3127–3134

  • Sun FX, Han XC, Wang JH (2010) An immune danger theory inspired model for network security monitoring. 2010 International Conference on Challenges in Environmental Science and Computer Engineering, 2010, pp 33–35

  • Tarakanov AO, Tarakanov YA (2005) A comparison of immune and genetic algorithms for two real-life tasks of pattern recognition. J Unconvent Comput 14:357–374

    Google Scholar 

  • Timmis J, Honec A, Stibord T et al (2008) Theoretical advances in artificial immune systems. Theor Comput Sci 403(1):11–12

    Article  MATH  Google Scholar 

  • Trojanowski K, Wierzchoń ST (2009) Immune-based algorithms for dynamic optimization. Inf Sci 179(10):1495–1515

    Google Scholar 

  • Wawrzyniak D, Obuchowicz A (2008) Evolutionary algorithm with forced variation in multi-dimensional non-stationary environment. In Wyrzykowski R et al (eds) PPAM 2007, LNCS 4967, pp 600–607

  • Yu X, Tang K, Yao X (2010) Immigrant schemes for evolutionary algorithms in dynamic environments: adapting the replacement rate. Sci China 53(1):1–11

    Google Scholar 

  • Zhang ZH, Qian SQ (2006) Adaptive immune algorithm and its track to dynamic function optimization. Pattern Recognit Artif Intell 20(1):85–94 (in Chinese)

    Google Scholar 

  • Zhang ZH, Qian SQ (2010) Immune algorithm with dynamic environments and its application to greenhouse control. Optim Eng 11:125–144

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang ZH, Qian SQ (2011) Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems. Soft Comput 15:1333–1349

    Article  Google Scholar 

  • Zhang CG, Zhang Y (2010) A danger theory inspired artificial immune algorithm for on-line supervised two-class classification problem. Neurocomputing 73(7-9):1244–1255

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation NSFC(61065010) and Doctoral Fund of Ministry of Education of China (20125201110003). The first and the second authors are partially supported by EU FP7 HAZCEPT (318907) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuhong Zhang.

Additional information

Communicated by F. Herrera.

Appendix

Appendix

Test problems (k = 0.5)

$$\begin{aligned} &G01.\,Min\,f(X) = 5\sum\limits^{4}_{i=1}X_{i}-5\sum\limits^{4}_{i=1}X_{i}^{2}-\sum\limits^{13}_{i=5}X_{i}\\ &s.t.,\\ &\quad g_{1}(Y) = 2Y_{1} + 2Y_{2} + Y_{10} + Y_{11}-10\leq 0, \\ &\quad g_{2}(Y) = 2Y_{1} + 2Y_{3} + Y_{10} + Y_{12}-10\leq 0,\\ &\quad g_{3}(Y) = 2Y_{2} + 2Y_{3} + Y_{11} + Y_{12}-10\leq 0,\\ &\quad g_{4}(Y) =-8Y_{1}+ Y_{10}\leq 0,\\ &\quad g_{5}(Y) = -8Y_{2} + Y_{11}\leq 0,\\ &\quad g_{6}(Y) = -8Y_{3} + Y_{12}\leq 0,\\ &\quad g_{7}(Y) = -2Y_{4} -Y_{5} + Y_{10}\leq 0,\\ &\quad g_{8}(Y)= -2Y_{6} -Y_{7} + Y_{11}\leq 0, \\&\quad g_{9}(Y) = -2Y_{8}-Y_{9} + Y_{12}\leq 0,\\ &\quad X_{i}=cos\frac{k\pi t}{2}x_{i},\quad Y_{i}=x_{i},\quad -sin \frac{k\pi t}{2} \leq x_{i}\leq 1+sin \frac{k\pi t}{2},\quad1\leq i\leq 9, \\ &\quad -sin \frac{k\pi t}{2}\leq x_{i}\leq 100+sin \frac{k\pi t}{2},\quad 10\leq i\leq 12, -sin \frac{k\pi t}{2}\leq x_{13}\leq 1+sin \frac{k\pi t}{2}.\\ \end{aligned} $$
$$ \begin{aligned} &G02.\,Min\,f(X)=-\left|\frac{\sum_{i=1}^{p(t)}cos^{4}(X_{i})-2\prod_{i=1}^{p(t)}cos^{2}(X_{i})} {\sqrt{\sum_{i=1}^{p(t)}iX_{i}^{2}}}\right|\\ &s.t.,\\ &\quad g_{1}(Y) = 0.75-\prod_{i=1}^{p(t)}Y_{i}\leq 0, \\ &\quad g_{2}(Y) = \sum\limits_{i=1}^{p(t)}Y_{i}-7.5p(t)\leq 0,\\&\quad X_{i}=x_{i},\quad Y_{i}=\left(cos\frac{k\pi t}{100}\right)x_{i},\quad -sin \frac{k\pi t}{2} < x_{i}\leq 10+sin \frac{k\pi t}{2}, \\ &\quad 1\leq i \leq p(t),\quad p(t)= 20+\bigg\lfloor20\left|sin\frac{k\pi t}{2}\right|\bigg\rfloor.\\ \end{aligned}$$
$$ \begin{aligned}&G03.\,Min\,f(X) =-p(t)^{p(t)/2}\prod\limits_{i=1}^{p(t)}X_{i}\\ &s.t.,\\ &\quad h_{1}(Y) =\sum\limits_{i=1}^{p(t)}Y_{i}^{2}-1 = 0,\\ &\quad X_{i}=x_{i}+sin \frac{\pi t}{100p(t)},\quad Y_{i}=\left(cos\frac{k\pi t}{100p(t)}\right)x_{i},\\ &\quad -sin \frac{k\pi t}{2}\leq x_{i}\leq 1+sin \frac{k\pi t}{2},\quad 1\leq i \leq p(t), p(t)= 20+\bigg\lfloor20\left|sin\frac{k\pi t}{2}\right|\bigg\rfloor.\\ \end{aligned} $$
$$ \begin{aligned}&G04.\,Min\,f(X) = 5.3578547X_{3}^{2}+ 0.8356891X_{1}X_{5} + 37.293239X_{1}-40792.141\\ &s.t., \\ & \quad g_{1}(Y) = 85.334407 + 0.0056858Y_{2}Y_{5} + 0.0006262Y_{1}Y_{4} -0.0022053Y_{3}Y_{5}-92\leq 0,\\ &\quad g_{2}(Y) =-5.334407-0.0056858Y_{2}Y_{5}-0.0006262Y_{1}Y_{4} + 0.0022053Y_{3}Y_{5}\leq 0,\\ &\quad g_{3}(Y) = 80.51249 + 0.0071317Y_{2}Y_{5} + 0.0029955Y_{1}Y_{2} + 0.0021813Y_{3}^{2}-110\leq 0,\\ &\quad g_{4}(Y) = -0.51249-0.0071317Y_{2}Y_{5}-0.0029955Y_{1}Y_{2}-0.0021813Y_{3}^{2}+90\leq 0,\\ &\quad g_{5}(Y) = 9.300961 + 0.0047026Y_{3}Y_{5} + 0.0012547Y_{1}Y_{3} + 0.0019085Y_{3}Y_{4}-25\leq 0,\\ &\quad g_{6}(Y) =-9.300961-0.0047026Y_{3}Y_{5}-0.0012547Y_{1}Y_{3}-0.0019085Y_{3}Y_{4} + 20\leq 0,\\ &\quad X_{i}=x_{i},\quad Y_{i}=x_{i}+\frac{t(b_{i}(t)-a_{i}(t))}{5000},\quad 78-sin \frac{k\pi t}{2}\leq x_{1}\leq 102+sin \frac{k\pi t}{2}, \\ &\quad 33-sin \frac{k\pi t}{2}\leq x_{2}\leq 45+sin \frac{k\pi t}{2},\quad 27-sin \frac{k\pi t}{2}\leq x_{i}\leq 45+sin \frac{k\pi t}{2},\quad 3\leq i \leq 5.\\ \end{aligned} $$
$$ \begin{aligned}&G05.\,Min\,f(X) = 3X_{1} + 0.000001X_{1}^{3}+ 2X_{2} + (0.000002/3)X_{2}^{3}\\& s.t., \\&\quad g_{1}(Y) =-Y_{4} + Y_{3}-0.55\leq 0, \quad g_{2}(Y) = -Y_{3} + Y_{4}-0.55\leq 0,\\ &\quad h_{1}(Y) = 1000 sin(-Y_{3}-0.25) + 1000 sin(-Y_{4}-0.25) + 894.8-Y1 = 0,\\ &\quad h_{2}(Y) = 1000 sin(Y_{3}-0.25) + 1000 sin(Y_{3}-Y_{4}-0.25) + 894.8-Y_{2} = 0,\\ &\quad h_{3}(Y) = 1000 sin(Y_{4} -0.25) + 1000 sin(Y_{4}-Y_{3}-0.25) + 1294.8 = 0, \\ &\quad X_{i}=\left(1+\frac{k\pi t}{100p(t)}\right)x_{i},\quad Y_{i}=x_{i}+sin\left(\frac{k\pi t}{1000p(t)}\right),\quad -sin \frac{k\pi t}{2}\leq x_{1}\leq 1200+sin \frac{k\pi t}{2},\\ &\quad -sin \frac{k\pi t}{2}\leq x_{2}\leq 1200+sin \frac{k\pi t}{2}, -0.55-sin \frac{k\pi t}{2}\leq x_{3}\leq 0.55+sin \frac{k\pi t}{2}, \\ &\quad -0.55-sin \frac{k\pi t}{2}\leq x_{4}\leq 0.55+sin \frac{k\pi t}{2}.\\ \end{aligned} $$
$$ \begin{aligned}&G06.\,Min\,f(X) = (X_{1}-10)^{3}+(X_{2} -20)^{3}\\ &s.t.,\\ &\quad g_{1}(Y) = -(Y_{1}-5)^{2}-(Y_{2}-5)^{2}+ 100\leq 0,\\ &\quad g_{2}(Y) = (Y_{1}-6)^{2} + (Y_{2}-5)^{2}-82.81\leq 0,\\ &\quad X_{i}=x_{i}+sin \frac{\pi t}{2},\quad Y_{i}=x_{i}+\frac{t(b_{i}(t)-a_{i}(t))}{5000},\quad 13-sin \frac{k\pi t}{2}\leq x_{1}\leq 100+sin \frac{k\pi t}{2},\\ &\quad -sin \frac{k\pi t}{2}\leq x_{2}\leq 100+sin \frac{k\pi t}{2}.\\ \end{aligned} $$
$$ \begin{aligned}&G07.\,Min\,f(X) = X_{1}^{2}+ X_{2}^{ 2} + X_{1}X_{2}-14X_{1}-16X_{2} + (X_{3}-10)^{2} + 4(X_{4}-5)^{2}\\ &\,\,\,\,\,\,\,\,\,\,\,\,\,+ (X_{5}-3)^{2}+2(X_{6}-1)^{2} + 5X^{2}_{7} + 7(X_{8}-11)^{2} + 2(X_{9}-10)^{2} + (X_{10}-7)^{2} + 45\\ &s.t.,\\ &\quad g _{1}(Y) =-105 + 4Y_{1} + 5Y_{2}-3Y_{7} + 9Y_{8}\leq 0,\\ &\quad g_{2}(Y) = 10Y_{1}-8Y_{2}-17Y_{7} + 2Y_{8}\leq 0,\\ &\quad g_{3}(Y) =-8Y_{1} + 2Y_{2} + 5Y_{9}-2Y_{10}-12 \leq 0,\\ &\quad g_{4}(Y) = 3(Y_{1} -2)^{2} + 4(Y_{2}-3)^{2} + 2Y^{2}_{ 3}-7Y_{4} -120\leq 0,\\ &\quad g_{5}(Y) = 5Y^{2}_{1} + 8x_{2} + (Y_{3}-6)^{2}-2Y_{4} -40\leq 0,\\ &\quad g_{6}(Y) = Y^{2}_{1} + 2(Y_{2}-2)^{2}-2Y_{1}Y_{2} + 14Y_{5}-6Y_{6}\leq 0,\\ &\quad g_{7}(Y) = 0.5(Y_{1}-8)^{2} + 2(Y_{2}-4)^{2} + 3Y^{2}_{5}-Y_{6}-30 \leq 0,\\ &\quad g_{8}(Y) = -3Y_{1} + 6Y_{2} + 12(Y_{9}-8)^{2}-7Y_{10}\leq 0,\\ &\quad X_{i}=x_{i}+\frac{t}{100},\quad Y_{i}=x_{i}+sin \frac{k\pi t}{2},\quad -10-sin \frac{k\pi t}{2}\leq x_{i}\leq 10+sin \frac{k\pi t}{2},\quad 1\leq i\leq 10.\\ \end{aligned} $$
$$ \begin{aligned}&G08.\,Min\,f(X) = -\frac{sin^{3}(2\pi X_{1}) sin(2\pi X_{2})}{X^{3}_{1}(X_{1} + X_{2})}\\ &s.t.,\\&\quad g_{1}(Y) = Y^{2}_{1}-Y_{2} + 1\leq 0, \quad g_{2}(Y) = 1-Y_{1} + (Y_{2}-4)^{2}\leq 0,\\ &\quad X_{i}=\left(cos\frac{k\pi t}{2}\right)x_{i},\quad Y_{i}=x_{i},\quad -sin \frac{k\pi t}{2}\leq x_{1},\quad x_{2}\leq 10+sin \frac{k\pi t}{2}.\\ \end{aligned} $$
$$ \begin{aligned}&G09.\,Min\,f(X) = (X_{1}-10)^{2} + 5(X_{2}-12)^{2} + X^{4}_{3} + 3(X_{4}-11)^{2} +10X_{5}^{6} + 7X_{6}^{2}\\ &\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+X_{7}^{4}-4X_{6}X_{7}-10X_{6}-8X_{7}\\ &s.t.,\\ &\quad g_{1}(Y) = -127 + 2Y^{2}_{1} + 3Y^{4}_{2} + Y_{3} + 4Y^{2}_{4} + 5Y_{5}\leq 0,\\ &\quad g_{2}(Y) = -282 + 7Y_{1} + 3Y_{2} + 10Y^{2}_{3} + Y_{4}-Y_{5}\leq 0,\\ &\quad g_{3}(Y) =-196 + 23Y_{1} + Y_{2}^{2} + 6Y^{2}_{6}-8Y_{7}\leq 0,\\ &\quad g_{4}(Y) = 4Y^{2}_{1} + Y_{2}^{2}-3Y_{1}Y_{2} + 2Y^{2}_{3} + 5Y_{6}-11Y_{7}\leq 0,\\ &\quad X_{i}=cos\frac{k\pi t}{2} \left(x_{i}+\frac{\pi t}{7}\right),\quad Y_{i}=x_{i},\quad -10-sin \frac{k\pi t}{2} \leq x_{i} \leq 10+sin \frac{k\pi t}{2}.\\ \end{aligned} $$
$$ \begin{aligned}& c02.\,Min\,f(X) = max(X_{1},X_{2},...,X_{p(t)})\\ &s.t.,\\ &\quad g_{1}(Y) = 10-\frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}[Y_{i}^{2}-10cos(2\pi Y_{i})+10]\leq 0,\\ &\quad g_{2}(Y) = \frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}[Y_{i}^{2}-10cos(2\pi Y_{i})+10]-15\leq 0,\\ &\quad g_{3}(Y) =\frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}[Y_{i}^{2}-10cos(2\pi Y_{i})+10]-20= 0,\\ &\quad X_{i}=\left(cos\frac{k \pi t}{100p(t)}\right)x_{i},\quad Y_{i}=x_{i},\quad -5.12-sin \frac{k\pi t}{2} \leq x_{i} \leq 5.12+sin \frac{k\pi t}{2},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10, \quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}& c03. \,Min\,f(X) = \sum\limits_{i=1}^{p(t)-1}(100(X_{i}^{2}-X_{i+1})^{2}+(X_{i}-1)^{2})\\ & s.t.,\\ &\quad h(Y) = \sum\limits_{i=1}^{p(t)-1}(Y_{i}-Y_{i+1})^{2}=0,\\ &\quad X_{i}=\left(1+sin\frac{k \pi t}{2}\right)\left(x_{i}+\frac{\pi t}{20}\right),\quad Y_{i}=\left(1+\frac{k\pi t}{20}\right)x_{i},\quad -1000-sin \frac{k\pi t}{2} \leq x_{i} \leq 1000+sin \frac{k\pi t}{2},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}&c04.\,Min\,f(X) = max(X_{1},X_{2},...,X_{p(t)})\\ & s.t.,\\ &\quad h_{1}(Y) = \frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}(Y_{i}cos\sqrt{|Y_{i}|})=0,\\&\quad h_{2}(Y) = \sum\limits_{i=1}^{p(t)/2-1}(Y_{i}-Y_{i+1})^{2}=0,\\ &\quad h_{3}(Y) = \sum\limits_{i=p(t)/2+1}^{p(t)-1}(Y_{i}^{2}-Y_{i+1})^{2}=0,\\ &\quad h_{4}(Y) = \sum\limits_{i=1}^{p(t)}Y_{i}=0,\\ &\quad X_{i}=x_{i}+\frac{\pi t}{3},\quad Y_{i}=\left(1+\frac{k\pi t}{20}\right)x_{i},\quad -50-sin \frac{k\pi t}{2} \leq x_{i} \leq 50+sin \frac{k\pi t}{2},\quad 1\leq i\leq p(t),\\ &\quad p(t)=5, \quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}&c05.\, Min\,f(X) = max(X_{1},X_{2},...,X_{p(t)})\\ &s.t.,\\ &\quad h_{1}(Y) = \frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}(-Y_{i}sin\sqrt{|Y_{i}|})=0,\\&\quad h_{2}(Y) = \frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}(-Y_{i}cos\sqrt{0.5|Y_{i}|})=0,\\&\quad X_{i}=cos\frac{k\pi t}{20}\left(x_{i}+sin\frac{\pi t}{20}\right),\quad Y_{i}=x_{i},\quad -600-sin \frac{k\pi t}{20} \leq x_{i} \leq 600+sin \frac{k\pi t}{20},\quad 1\leq i\leq p(t),\\&\quad p(t)=5, \quad 1\leq t\leq 5, \quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}&c07. \,Min\,f(X) = \sum\limits_{i=1}^{p(t)-1}(100(X_{i}^{2}-X_{i+1})^{2}+(X_{i}-1)^{2})\\ &s.t.,\\ &\quad g_{1}(Y) = 0.5-exp\left(-0.1\sqrt{\frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}Y_{i}^{2}}\right)-3exp\left(\frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}cos(0.1Y_{i})\right)+exp(1)\leq 0,\\ &\quad X_{i}=\left(cos\frac{k\pi t}{20p(t)}\right)x_{i},\quad Y_{i}=\left(cos\frac{k\pi t}{20p(t)}\right)x_{i},\quad -140-sin \frac{k\pi t}{20} \leq x_{i} \leq 140+sin \frac{k\pi t}{20},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}&c09.\, Min\,f(X) = \sum\limits_{i=1}^{p(t)-1}(100(X_{i}^{2}-X_{i+1})^{2}+(X_{i}-1)^{2})\\ &s.t.,\\ &\quad h(Y) = \sum\limits_{i=1}^{p(t)}Y_{i}sin \sqrt{|Y_{i}|}= 0,\\ &\quad X_{i}=\left(cos\frac{k\pi t}{2000}\right)x_{i},\quad Y_{i}=x_{i}+sin\left(\frac{\pi t}{2000}\right),\quad -500-sin \frac{k\pi t}{2000} \leq x_{i} \leq 500+sin \frac{k\pi t}{2000},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned} &c11.\, Min\,f(X) =- \frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}X_{i}cos(2\sqrt{|X_{i}|})\\ &s.t.,\\ &\quad h(Y) = \sum\limits_{i=1}^{p(t)-1}(100(Y_{i}^{2}-Y_{i+1})^{2}+(Y_{i}-1)^{2})= 0,\\ &\quad X_{i}=cos\frac{k\pi t}{2000p(t)}\left(x_{i}+sin\frac{k\pi t}{2000p(t)}\right),\quad Y_{i}=\left(cos\frac{k\pi t}{2000p(t)}\right) x_{i},\quad -100-sin \frac{k\pi t}{2000} \leq x_{i} \leq 100+sin \frac{k\pi t}{2000},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}&c12.\, Min\,f(X) = \sum\limits_{i=1}^{p(t)}X_{i}sin \sqrt{|X_{i}|}\\ &s.t.,\\ &\quad h(Y) = \sum\limits_{i=1}^{p(t)-1}(Y_{i}^{2}-Y_{i+1})^{2}= 0,\\ &\quad g(Y) = \sum\limits_{i=1}^{p(t)}(Y_{i}-100cos(0.1Y_{i})+10)\leq 0,\\ &\quad X_{i}=cos\frac{k\pi t}{2000}\left(x_{i}+sin\frac{\pi t}{2000}\right),\quad Y_{i}=x_{i}+sin\frac{\pi t}{2000},\quad -1000-sin \frac{k\pi t}{2000} \leq x_{i} \leq 1000+sin \frac{k\pi t}{2000},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned} &c13. \,Min\,f(X) = -\frac{1}{p(t)}\sum\limits_{i=1}^{p(t)}X_{i}sin(\sqrt{|X_{i}|})\\ &s.t.,\\ &\quad g_{1}(Y) = -50+\frac{1}{100p(t)} \sum\limits_{i=1}^{p(t)}Y_{i}^{2}\leq 0,\\ &\quad g_{2}(Y) = \frac{50}{p(t)} \sum\limits_{i=1}^{p(t)}sin\left(\frac{1}{50}\pi Y_{i}\right)\leq 0,\\ &\quad g_{3}(Y) = 76-50\left(\sum\limits_{i=1}^{p(t)}\frac{Y_{i}^{2}}{4000}-\prod\limits_{i=1}^{p(t)}cos \frac{Y_{i}}{\sqrt{i}}\right)\leq 0, \\ &\quad X_{i}=x_{i}+sin\frac{\pi t}{2000},\quad Y_{i}=cos\frac{k\pi t}{2000}\left(x_{i}+sin\frac{\pi t}{2000}\right),\quad -500-sin \frac{k\pi t}{2000} \leq x_{i} \leq 500+sin \frac{k\pi t}{2000},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}&c14.\,Min\,f(X) = \sum\limits_{i=1}^{p(t)-1}(100(X_{i}^{2}-X_{i+1})^{2}+(X_{i}-1)^{2})\\& s.t.,\\&\quad g_{1}(Y) = \sum\limits_{i=1}^{p(t)}(-Y_{i}cos\sqrt{|Y_{i}|})-p(t)\leq 0,\\&\quad g_{2}(Y) = \sum\limits_{i=1}^{p(t)}(Y_{i}cos\sqrt{|Y_{i}|})-p(t)\leq 0, \\ &\quad g_{3}(Y) = \sum\limits_{i=1}^{p(t)}(Y_{i}sin\sqrt{|Y_{i}|})-10p(t)\leq 0,\\ &\quad X_{i}=x_{i}+sin\frac{\pi t}{2000},\quad Y_{i}=x_{i},\quad -1000-sin \frac{k\pi t}{2} \leq x_{i} \leq 1000+sin \frac{k\pi t}{2},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}&c16.\, Min\,f(X) = \sum\limits_{i=1}^{p(t)}\frac{X_{i}^{2}}{4000}-\prod\limits_{i=1}^{p(t)}cos\left(\frac{Y_{i}}{\sqrt{i}}\right)+1\\ &s.t.,\\ &\quad g_{1}(Y) = \sum_{i=1}^{p(t)}[Y_{i}^{2}-100cos(\pi Y_{i}+10)]\leq 0,\\ &\quad g_{2}(Y) = \prod\limits_{i=1}^{p(t)}Y_{i}\leq 0,\\ &\quad h(Y) = \sum\limits_{i=1}^{p(t)}(Y_{i}sin\sqrt{|Y_{i}|})= 0,\\ &\quad X_{i}=x_{i},\quad Y_{i}=\left(1+sin\frac{k \pi t}{20}\right)x_{i},\quad -10-sin \frac{k\pi t}{2} \leq x_{i} \leq 10+sin \frac{k\pi t}{2},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}&c17. \,Min\,f(X) = \sum\limits_{i=1}^{p(t)}(X_{i}^{2}-X_{i+1})^{2}\\ &s.t.,\\ &\quad g(Y) = \prod\limits_{i=1}^{p(t)}Y_{i}\leq 0,\\ &\quad h(Y)=\sum\limits_{i=1}^{p(t)}X_{i}sin 4\sqrt{|Y_{i}|}=0, \\ &\quad X_{i}=x_{i},\quad Y_{i}=x_{i}+sin\frac{\pi t}{20},\quad -10-sin \frac{k\pi t}{2} \leq x_{i} \leq 10+sin \frac{k\pi t}{2},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$
$$ \begin{aligned}&c18.\, Min\,f(X) = \sum\limits_{i=1}^{p(t)}(X_{i}^{2}-X_{i+1})^{2}\\ &s.t.,\\ &\quad h(Y)=\sum\limits_{i=1}^{p(t)}Y_{i}sin \sqrt{|Y_{i}|}=0,\\ &\quad X_{i}=x_{i},\quad Y_{i}=\left(1+sin\frac{k\pi t}{20}\right)\left(x_{i}+sin\frac{\pi t}{200}\right),\quad -50-sin \frac{k\pi t}{2} \leq x_{i} \leq 50+sin \frac{k\pi t}{2},\\ &\quad p(t)=5,\quad 1\leq t\leq 5,\quad p(t)=10,\quad t>5.\\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Yue, S., Liao, M. et al. Danger theory based artificial immune system solving dynamic constrained single-objective optimization. Soft Comput 18, 185–206 (2014). https://doi.org/10.1007/s00500-013-1048-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1048-0

Keywords

Navigation