Skip to main content

Advertisement

Log in

Long term forest management drives drought resilience in Mediterranean black pine forest

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Spanish black pine showed greater resilience and resistance, but generally lower recovery to drought events in managed than in unmanaged forest stands under Mediterranean humid climate.

Abstract

Drought negative effects on forest ecosystems are projected to increase under global warming all over the world. In this context, forest management can be an effective option for reducing drought impacts and increasing tree growth stability to extreme drought events. Here, we aim to evaluate black pine (Pinus nigra subsp. salzmannii) growth response to climatic variability and drought events in managed and unmanaged stands under similar Mediterranean climatic conditions. Drought events were identified using long-term climatic data, and basal area increments were calculated for 100–120-year old trees cored in managed and unmanaged plots. Results showed that tree size, temperature, and the interaction between management treatment and water availability significantly influenced tree growth. Basal area increment was reduced in response to the 1983, 1991, 1994‒1995, 1999–2000 and 2005 drought events. Trees in managed plots showed lower growth reductions in response to drought than those located in unmanaged plots, probably experiencing higher competition for soil water, whereas the reverse happened under wet climate conditions. Black pines showed greater resilience and resistance, but generally lower recovery to drought events in managed than in unmanaged stands. Our results suggest that forest management enhances drought tolerance in black pine stands, which may help to ameliorate the negative impacts of global warming across Mediterranean forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfaro-Sánchez R, Jump AS, Pino J, Díez-Nogales O, Espelta JM (2019) Land use legacies drive higher growth, lower wood density and enhanced climatic sensitivity in recently established forests. Agric for Meteorol 276:107630

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56. FAO, Rome

  • Allué-Andrade JL (1990) Atlas fitoclimático de España. Taxonomías. Ministerio de Agricultura, Pesca y Alimentación. INIA, Madrid

  • Anderegg LDL, Anderegg WRL, Berry JA (2013) Not all droughts are created equal: translating meteorological drought into woody plant mortality. Tree Physiol 33:701–712

    Article  PubMed  Google Scholar 

  • Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349:528–532

    Article  CAS  PubMed  Google Scholar 

  • Andivia E, Ruiz-Benito P, Díaz-Martínez P, Carro-Martínez N, Zavala MA, Madrigal-González J (2020) Inter-specific tolerance to recurrent droughts of pine species revealed in saplings rather than adult trees. For Ecol Manag 459:117848

    Article  Google Scholar 

  • Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Chang Biol 13(4):804–815

    Google Scholar 

  • Astigarraga J, Andivia E, Zavala MA, Gazol A, Cruz-Alonso V, Vicente-Serrano SM, Ruiz-Benito P (2020) Evidence of non-stationary relationships between climate and forest responses: increased sensitivity to climate change in Iberian forests. Glob Change Biol 26:5063–5076

    Article  Google Scholar 

  • Béllard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Biondi F, Qeadan F (2008) A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree Ring Res 64(2):81–96

    Article  Google Scholar 

  • Bosela M, Lukac M, Castagneri D, Sedmák R, Biber P, Carrer M, Konôpka B, Nola P, Nagel TA, Popa I, Roibu CC, Svoboda M, Trotsiuk V, Büntgen U (2018) Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci Total Environ 615:1460–1469

    Article  CAS  PubMed  Google Scholar 

  • Bottero A, D’Amato AW, Palik BJ, Bradford JB, Fraver S, Battaglia MA, Asherin LA (2017) Density-dependent vulnerability of forest ecosystems to drought. J Appl Ecol 54:1605–1614

    Article  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann for Sci 63:625–644

    Article  Google Scholar 

  • Breheny P, Burchett W (2017) Visualization of regression models using visreg. R J 9:56–71

    Article  Google Scholar 

  • Bunn AG (2010) Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28:251–258

    Article  Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480

    Article  PubMed  Google Scholar 

  • Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM (2015a) To die or not to die: early-warning signals of dieback in response to a severe drought. J Ecol 103:44–57

    Article  CAS  Google Scholar 

  • Camarero JJ, Gazol A, Tardif JC, Conciatori F (2015b) Attributing forest responses to global-change drivers: limited evidence of a CO2-fertilization effect in Iberian pine growth. J Biogeogr 42:2220–2233

    Article  Google Scholar 

  • Candel-Pérez D, Linares JC, Viñegla B, Lucas-Borja ME (2012) Assessing climate–growth relationships under contrasting stands of co-occurring Iberian pines along an altitudinal gradient. For Ecol Manage 274:48–57

    Article  Google Scholar 

  • Del Río M, Rodríguez-Alonso J, Bravo-Oviedo A, Ruíz-Peinado R, Cañellas I, Gutiérrez E (2014) Aleppo pine vulnerability to climate stress is independent of site productivity of forest stands in southeastern Spain. Trees 28:1209–1224

    Article  Google Scholar 

  • Domec J-C, King JS, Ward E, Oishi AC, Palmroth S, Radecki A, Bell DM, Miao G, Gavazzi M, Johnson DM, McNulty SG, Sun G, Noormets A (2015) Conversion of natural forests to managed forest plantations decreases tree resistance to prolonged droughts. For Ecol Manage 355:58–71

    Article  Google Scholar 

  • Dorman M, Perevolotsky A, Sarris D, Svoray T (2015) The effect of rainfall and competition intensity on forest response to drought: lessons learned from a dry extreme. Oecologia 177:1025–1038

    Article  PubMed  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gandullo JM, Palomares OS (1994) Estaciones ecológicas de los pinares españoles. ICONA, Madrid, p 188

    Google Scholar 

  • García Abarca JA, Rojo Arribas F, Sánchez Palacios G (2009) Los Palancares y Agregados: 111 años de gestión forestal sostenible. Tragsatec, Castilla-La Mancha

  • Gazol A, Camarero JJ, Vicente-Serrano SM, Sánchez-Salguero R, Gutiérrez E, de Luis M, Galván JD (2018) Forest resilience to drought varies across biomes. Glob Change Biol 24(5):2143–2158

    Article  Google Scholar 

  • Granda E, Gazol A, Camarero JJ (2018) Functional diversity differently shapes growth resilience to drought for co-existing pine species. J Veg Sci 29(2):265–275

    Article  Google Scholar 

  • Gutiérrez E (1989) Dendroclimatological study of Pinus sylvestris L. in southern Catalonia (Spain). Tree Ring Bull 49:1–9

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Herrero A, Zamora R (2014) Plant responses to extreme climatic events: a field test of resilience capacity at the southern range edge. PLoS ONE 9(1):e87842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrero A, Rigling A, Zamora R (2013) Varying climate sensitivity at the dry distribution edge of Pinus sylvestris and P. nigra. For Ecol Manage 308:50–61

    Article  Google Scholar 

  • Hodgson D, McDonald JL, Hosken DJ (2015) What do you mean, “resilient”? Trends Ecol Evol 30:503–506

    Article  PubMed  Google Scholar 

  • Hoffmann N, Schall P, Ammer C, Leder B, Vor T (2018) Drought sensitivity and stem growth variation of nine alien and native tree species on a productive forest site in Germany. Agric for Meteorol 256–257:431–444

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • IPCC (2013) Climate change 2013, the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–327

    Article  CAS  PubMed  Google Scholar 

  • Lucas-Borja ME, Candel D, Jindo K et al (2012) Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant Soil 354:359–370. https://doi.org/10.1007/s11104-011-1072-8

  • Lechuga V, Carraro V, Viñegla B, Carreira JA, Linares JC (2017) Managing drought-sensitive forests under global change. Low competition enhances long-term growth and water uptake in Abies pinsapo. For Ecol Manage 406:72–82

    Article  Google Scholar 

  • Linares JC, Tíscar PA (2010) Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol 30:795–806

    Article  PubMed  Google Scholar 

  • Linares JC, Camarero JJ, Carreira JA (2010) Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. J Ecol 98:592–603

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259:698–709

    Article  Google Scholar 

  • Lloret F, Keeling E, Sala A (2011) Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–1920

    Article  Google Scholar 

  • Madrigal-González J, Ballesteros-Cánovas JA, Herrero A, Ruiz-Benito P, Stoffel M, Lucas-Borja ME, Zavala MA (2017) Forest productivity in southwestern Europe is controlled by coupled North Atlantic and Atlantic Multidecadal Oscillations. Nat Commun 8(1):1–8

    Article  CAS  Google Scholar 

  • Madrigal-González J, Andivia E, Zavala MA, Stoffel M, Calatayud J, Sánchez-Salguero R, Ballesteros-Cánovas J (2018) Disentangling the relative role of climate change on tree growth in an extreme Mediterranean environment. Sci Total Environ 642:619–628

    Article  PubMed  CAS  Google Scholar 

  • Manrique-Alba A, Beguería S, Molina AJ, González-Sanchis M, Tomàs-Burguera M, del Campo A, Colangelo M, Camarero JJ (2020) Long-term thinning effects on tree growth, drought response and water use efficiency at two Aleppo pine plantations in Spain. Science of the total environment, vol 728, p 138536 ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.138536

  • Marqués L, Camarero JJ, Gazol A, Zavala MA (2016) Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. For Ecol Manage 381:157–167

    Article  Google Scholar 

  • Marqués L, Madrigal-González J, Zavala MA, Camarero JJ, Hartig F (2018) Last century forest productivity in a managed dry-edge Scots pine population: the two sides of climate warming. Ecol Appl 28(1):95–105

    Article  PubMed  Google Scholar 

  • Martín-Benito D, del Rio M, Cañellas I (2010) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Ann for Sci 67:401

    Article  Google Scholar 

  • Martínez-Vilalta J, López BC, Loepfe L, Lloret F (2012) Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 168:877–888

    Article  PubMed  Google Scholar 

  • Michelot A, Bréda N, Damesin C, Dufrêne E (2012) Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manage 265:161–171

    Article  Google Scholar 

  • Muñoz-Gálvez FJ, Herrero A, Pérez-Corona ME, Andivia E (2021) Are pine-oak mixed stands in Mediterranean mountains more resilient to drought than their monospecific counterparts? For Ecol Manage 484:118955

    Article  Google Scholar 

  • Navarro-Cerrillo RM, Duque-Lazo J, Manzanedo RD, Sánchez-Salguero R, Palacios-Rodriguez G (2018b) Climate change may threaten the southernmost Pinus nigra subsp. salzmannii (Dunal) Franco populations: an ensemble niche-based approach. iForest 11:396–405

    Article  Google Scholar 

  • Navarro-Cerrillo RM, Rodríguez-Vallejo C, Silveiro E, Hortal A, Palacios-Rodríguez G, Duque-Lazo J, Camarero JJ (2018a) Cumulative drought stress leads to a loss of growth resilience and explains higher mortality in planted than in naturally regenerated Pinus pinaster stands. Forests 9:358

    Article  Google Scholar 

  • Nikinmaa L, Lindner M, Cantarello E, Jump AS, Siedl R, Winkel G, Muys B (2020) Reviewing the use of resilience concepts in forest sciences. Curr Rep 6:61–80

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2018) nlme: linear and nonlinear mixed effects models. R package version 3.1-137. https://CRAN.R-project.org/package=nlme>

  • R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org

  • Rahman M, Islam M, Bräuning A (2019) Species-specific growth resilience to drought in a mixed semi-deciduous tropical moist forest in South Asia. For Ecol Manage 433:487–496

    Article  Google Scholar 

  • Salazar-Tortosa D, Castro J, Villar-Salvador P, Viñegla B, Matías L, Michelsen A, Querejeta JI (2018) The “isohydric trap”: a proposed feedback between water shortage, stomatal regulation, and nutrient acquisition drives differential growth and survival of European pines under climatic dryness. Glob Change Biol 24(9):4069–4083

    Article  Google Scholar 

  • Sánchez-Salguero R, Navarro-Cerillo RM, Camarero JJ, Fernández-Cancio A (2012) Selective drought-induced decline of pine species in southeastern Spain. Clim Change 113:767–785

    Article  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Dobbertin M, Fernández-Cancio Á, Vilà-Cabrera A, Manzanedo RD, Zavala MA, Navarro-Cerrillo RM (2013) Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests. For Ecol Manage 310:956–967

    Article  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Hevia A, Madrigal-González J, Linares JC, Ballesteros-Canovas JA, Gutiérrez E (2015) What drives growth of Scots pine in continental Mediterranean climates: drought, low temperatures or both? Agric for Meteorol 206:151–162

    Article  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Gutiérrez E, González Rouco F, Gazol A, Sangüesa-Barreda G, Andreu-Hayles L, Linares JC, Seftigen K (2017) Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges. Glob Change Biol 23:2705–2719

    Article  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Rozas V, Génova M, Olano JM, Arzac A, Gazol A, Caminero L, Tejedor E, de Luis M, Linares JC (2018) Resist, recover or both? Growth plasticity in response to drought is geographically structured and linked to intra-specific variability in Pinus pinaster. J Biogeogr 45:1126–1139. https://doi.org/10.1111/jbi.13202

    Article  Google Scholar 

  • Schwarz J, Skiadaresis G, Kohler M et al (2020) Quantifying growth responses of trees to drought—a critique of commonly used Rresilience indices and ecommendations for future studies. Curr Forestry Rep 6:185–200. https://doi.org/10.1007/s40725-020-00119-2

  • Serra-Maluquer X, Mencuccini M, Martínez-Vilalta J (2018) Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 187:343–354

    Article  CAS  PubMed  Google Scholar 

  • Sohn JA, Hartig F, Kohler M, Huss J, Bauhus J (2016a) Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecol Appl 26:2190–2205

    Article  PubMed  Google Scholar 

  • Sohn JA, Saha S, Bauhus J (2016b) Potential of forest thinning to mitigate drought stress: a meta-analysis. For Ecol Manage 380:261–273

    Article  Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys, 2nd edn. USDA, Washington

    Google Scholar 

  • Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018) Will drought events become more frequent and severe in Europe? Int J Climatol 38(4):1718–1736

    Article  Google Scholar 

  • Tardif J, Camarero JJ, Ribas M, Gutiérrez E (2003) Spatiotemporal variability in tree ring growth in the Central Pyrenees: climatic and site influences. Ecol Monogr 73:241–257

    Article  Google Scholar 

  • Vaganov EA, Hughes MK, Shashkin AV (2016) Growth dynamics of conifer tree rings. Springer, Berlin

    Google Scholar 

  • van der Maaten-Theunissen M, van der Maaten E, Bouriaud O (2015) pointRes: an R package to analyze pointer years and components of resilience. Dendrochronologia 35:34–38

    Article  Google Scholar 

  • Vitali V, Buentgen U, Bauhus J (2017) Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Chang Biol 23:5108–5119

    Article  PubMed  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Zhang C, Pretzsch H, Rothe A (2012) Size-dependent responses to summer drought in Scots pine, Norway Spruce and Common Oak. Trees 26(2):557–569

    Article  Google Scholar 

  • Zeide B (2001) Thinning and growth: a full turnaround. J Forest 99:20–25

    Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This study was supported by the project POII10-0179-4700 of “Junta de Comunidades de Castilla-La Mancha”. EA is supported by a postdoctoral grant by Complutense University of Madrid and by REMEDINAL TE-CM (S2018/EMT-4338). DCP is funded through a Juan de la Cierva research contract (Ref. IJCI-2017-31638), provided by the Spanish Ministry of Science, Innovation and Universities. David Candel-Pérez was funded through a Juan de la Cierva research contract (ref. IJCI-2017-31638), provided by the Spanish Ministry of Science, Innovation and Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Lucas-Borja.

Ethics declarations

Conflict of interest

The authors declare not conflict of interest.

Additional information

Communicated by van der Maaten.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas-Borja, M.E., Andivia, E., Candel-Pérez, D. et al. Long term forest management drives drought resilience in Mediterranean black pine forest. Trees 35, 1651–1662 (2021). https://doi.org/10.1007/s00468-021-02143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02143-6

Keywords

Navigation