Skip to main content
Log in

Asymptotic Lattice Path Enumeration Using Diagonals

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider d-dimensional lattice path models restricted to the first orthant whose defining step sets exhibit reflective symmetry across every axis. Given such a model, we provide explicit asymptotic enumerative formulas for the number of walks of a fixed length: the exponential growth is given by the number of distinct steps a model can take, while the sub-exponential growth depends only on the dimension of the underlying lattice and the number of steps moving forward in each coordinate. The generating function of each model is first expressed as the diagonal of a multivariate rational function, then asymptotic expressions are derived by analyzing the singular variety of this rational function. Additionally, we show how to compute subdominant growth, reflect on the difference between rational diagonals and differential equations as data structures for D-finite functions, and show how to determine first order asymptotics for the subset of walks that start and end at the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. A function is D-finite if it satisfies a linear differential equation with polynomial coefficients.

  2. The walks themselves are not required to possess any particular kind of symmetry.

  3. The class of D-finite functions is closed under the diagonal operation  [24].

  4. In general, the kernel method associates to each set of steps \(\mathcal {S}\subset \{\pm 1,0\}^d\) some (possibly unique) group of rational maps (which groups arise, and what properties they possess, is still being investigated). When this group is finite an analysis similar to the one presented here often, but not always, yields an explicit expression for the corresponding generating function, and proves that this generating function is D-finite. See [10] for the two dimensional case and [3] for some results in three dimensions.

  5. Theorem 3.5 of [26] allows for asymptotic expansions of coefficient sequences more generally defined from multivariate functions than the diagonal sequence. The formula listed in Theorem 3.3 is stated only for diagonal sequences, as are our definitions of critical and minimal points.

  6. The input is formatted for Maple version 18.

References

  1. André, D.: Solution directe du problème résolu par M. Bertrand. C. R. Acad. Sci. Paris 105, 436–437 (1887)

    Google Scholar 

  2. Aparicio-Monforte, A., Kauers, M.: Formal Laurent series in several variables. Expos. Math. 31(4), 350–367 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bostan, A., Bousquet-Mélou, M., Kauers, M., Melczer, S.: On lattice walks confined to the positive octant. Accepted to the Ann. Comb. November (2014). http://arxiv.org/abs/1409.3669

  4. Bostan, A., Kauers, M.: Automatic classification of restricted lattice walks. In: Proceedings of FPSAC 2009, Discrete Mathematics and Theoretical Computer Science Proceedings, AK, pp. 201–215 (2009)

  5. Bostan, A., Kurkova, I., Raschel, K.: A human proof of Gessel’s lattice path conjecture. http://arxiv.org/abs/1309.1023

  6. Bostan, A., Lairez, P., Salvy, B.: Creative telescoping for rational functions using the Griffiths–Dwork method. In: Proceedings of the international symposium on symbolic and algebraic computation (ISSAC), New York, NY, USA. ACM, pp. 93–100 (2013)

  7. Bostan, A., Raschel, K., Salvy, B.: Non-D-finite excursions in the quarter plane. J. Comb. Theory Ser. A 121, 45–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bousquet-Mélou, M.: Walks in the quarter plane: Kreweras’ algebraic model. Ann. Appl. Probab. 15(2), 1451–1491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bousquet-Mélou, M.: An elementary solution of Gessel’s walks in the quadrant. http://arxiv.org/abs/1503.08573 (2015)

  10. Bousquet-Mélou, M., Mishna, M.: Walks with small steps in the quarter plane. In: Algorithmic Probability and Combinatorics, vol. 520 of Contemporary Mathematics, pp. 1–40. American Mathematical Society, Providence, RI (2010)

  11. Bousquet-Mélou, M., Petkovšek, M.: Walks confined in a quadrant are not always D-finite. Theor. Comput. Sci. 307(2):257–276. Random generation of combinatorial objects and bijective combinatorics (2003)

  12. Christol, G.: Globally bounded solutions of differential equations. In: Analytic Number Theory (Tokyo, 1988), vol. 1434 of Lecture Notes in Mathematics, pp. 45–64. Springer, Berlin (1990)

  13. Denisov, D., Wachtel, V.: Random walks in cones. Ann. Probab. 43(3), 992–1044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter-Plane. Algebraic Methods, Boundary Value Problems and Applications, vol. 40. Springer-Verlag, Berlin Heidelberg (1999)

  15. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  16. Garrabrant, S., Pak, I.: Counting with irrational tiles. http://arxiv.org/abs/1407.8222

  17. Gessel, I.M., Zeilberger, D.: Random walk in a Weyl chamber. Proc. Am. Math. Soc. 115(1), 27–31 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grabiner, D.J.: A combinatorial correspondence for walks in Weyl chambers. J. Comb. Theory Ser. A 71(2), 275–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grabiner, D.J., Magyar, P.: Random walks in Weyl chambers and the decomposition of tensor powers. J. Algebr. Comb. 2(3), 239–260 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Humphreys, J.E.: Introduction to Lie algebras and representation theory. In: Graduate Texts in Mathematics, vol. 9. Springer, New York (1972)

  21. Janse van Rensburg, E.J., Prellberg, T., Rechnitzer, A.: Partially directed paths in a wedge. J. Comb. Theory Ser. A 115(4), 623–650 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kauers, M., Jaroschek, M., Johansson, F.: Computer Algebra and Polynomials. In: Gutierrez, J., Schicho, J., Weimann, M. (eds.) Ore Polynomials in Sage, vol. 8942, pp. 105–125. Springer International Publishing (2015)

  23. Koutschan, C.: A fast approach to creative telescoping. Math. Comput. Sci. 4(2–3), 259–266 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lipshitz, L.: D-finite power series. J. Algebra 122(2), 353–373 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Melczer, S., Mishna, M.: Singularity analysis via the iterated kernel method. Comb. Probab. Comput. 23, 861–888 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pemantle, R., Wilson, M.C.: Asymptotics of multivariate sequences: I. Smooth points of the singular variety. J. Comb. Theory Ser. A 97(1), 129–161 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pemantle, R., Wilson, M.C.: Analytic Combinatorics in Several Variables. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  28. Raichev, A.: Amgf documentation—release 0.8. https://github.com/araichev/amgf (2012)

  29. Raichev, A., Wilson, M.C.: Asymptotics of coefficients of multivariate generating functions: improvements for smooth points. Electr. J. Comb. 15(1) (2008)

  30. Raichev, A., Wilson, M.C.: Asymptotics of coefficients of multivariate generating functions: improvements for multiple points. Online J. Anal. Comb. 6 (2011)

  31. Wimp, J., Zeilberger, D.: Resurrecting the asymptotics of linear recurrences. J. Math. Anal. Appl. 111(1), 162–176 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xin, G.: Determinant formulas relating to tableaux of bounded height. Adv. Appl. Math. 45(2), 197–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Manuel Kauers for the construction in Proposition 2.6, and illuminating discussions on diagonals of generating functions, and the anonymous referees and editors of both this work and its previous extended abstract for their comments and suggestions. We are also grateful to Mireille Bousquet-Mélou for pointing out some key references and provoking important clarifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marni Mishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melczer, S., Mishna, M. Asymptotic Lattice Path Enumeration Using Diagonals. Algorithmica 75, 782–811 (2016). https://doi.org/10.1007/s00453-015-0063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0063-1

Keywords

Navigation