Skip to main content
Log in

Replenishment of volatile-rich mafic magma into a degassed chamber drives mixing and eruption of Tungurahua volcano

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

In July and August of 2006 and May of 2010, Tungurahua volcano, Ecuador, produced pyroclastic flow-forming eruptions, representing increased explosivity compared to the Strombolian events that characterized its behavior since its renewal in 1999. Volatiles (H2O, CO2, S, Cl) and major elements were analyzed in 35 melt inclusions hosted in olivine and pyroxene phenocrysts in tephra from both events to reconstruct the pre-eruptive magmatic conditions and mechanisms that led to these more explosive episodes. Melt inclusion composition paired with host phenocryst zonation indicate mixing of two distinct magmas: a volatile-rich (∼4.0 wt% H2O and ∼1,800 ppm S) basaltic andesite containing olivine phenocrysts and a degassed (∼1.0 wt% H2O and 100–500 ppm S) andesite with plagioclase and pyroxene phenocrysts that contain andesitic to dacitic melt inclusions. We attribute the lower volatile concentrations in the evolved melt inclusions to degassing that occurred during residence in a shallow reservoir, where fractional crystallization led to the production of dacitic melt. Our melt inclusion data confirm the hypothesis made on the basis of phenocryst zoning profiles (J Volcanol Geotherm Res 199:69–84, 2011) that the intrusion of a volatile-rich basaltic andesite into a more evolved chamber and subsequent mixing led to explosive eruption in 2006. Melt inclusions from the 2006 and 2010 eruptive products have comparable volatile and major element compositions. High H2O concentrations in melt inclusions from 2010 olivine indicate little diffusive loss from the melt inclusions following mixing with the degassed andesitic reservoir, which requires that the 2010 eruption be the result of a new recharge event and not remobilization of the 2006 hybrid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson AT (1975) Some basaltic and andesitic gases. Rev Geophys 13:37–55

    Article  Google Scholar 

  • Anderson AT, Newman S, Williams SN, Druitt TH, Skirius C, Stolper E (1989) H2O, CO2, Cl, and gas in Plinian and ash-flow Bishop rhyolite. Geology 17:221–225

    Article  Google Scholar 

  • Arellano S, Hall ML, Samaniego P, Le Pennec JL, Ruiz G, Molina I, Yepes H (2008) Degassing patterns of Tungurahua volcano, Ecuador, during the 1999–2006 eruptive period deduced from spectroscopic remote measurements of SO2 emissions. J Volcanol Geotherm Res 176:151–162

    Article  Google Scholar 

  • Biggs J, Mothes P, Ruiz M, Amelung F, Dixon TH, Baker S, Hong SH (2010) Stratovolcano growth by co-eruptive intrusion: the 2008 eruption of Tungurahua Ecuador. Geophys Res Lett 37:21

    Google Scholar 

  • Blundy J, Cashman K (2005) Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens Volcano Geol 33:793–796

    Google Scholar 

  • Blundy J, Cashman KV, Rust AC, Whitham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290:289–301

    Article  Google Scholar 

  • Bouvet De Maisonneuve C, Dungan MA, Bachmann O, Burgisser A (2012) Insights into shallow magma storage and crystallization at Volcán Llaima (Andean Southern Volcanic Zone, Chile). J Volcanol Geotherm Res 211:76–91

  • Bucholz CE, Gaetani GA, Behn MD, Shimizu N (2013) Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet Sci Lett 374:145–155

    Article  Google Scholar 

  • Carn SA, Krueger AJ, Krotkov NA, Arellano S, Yang K (2008) Daily monitoring of Ecuadorian volcanic degassing from space. J Volcanol Geotherm Res 176:151–162

    Article  Google Scholar 

  • Carrasco-Núñez G, Rose WI (1995) Eruption of a major Holocene pyroclastic flow at Citlaltepetl volcano (Pico de Orizaba) Mexico, 8.5–9.0 ka. J Volcanol Geotherm Res 69:197–215

    Article  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2000) Magma storage conditions for the 1953–1974 eruption of Southwest Trident volcano, Katmai National Park, Alaska. Contrib Mineral Petrol 140:99–118

    Article  Google Scholar 

  • Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83

    Article  Google Scholar 

  • Davidson P, Kamenetsky VS (2007) Primary aqueous fluids in rhyolitic magmas: melt inclusion evidence for pre- and post-trapping exsolution. Chem Geol 237:372–383

    Article  Google Scholar 

  • De Hoog JCM, Mason PRD, van Bergen MM (2001) Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochim Cosmochim Acta 65:3147–3164

    Article  Google Scholar 

  • Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am Mineral 80:1339–1342

    Google Scholar 

  • Dixon JE, Stolper E, Delaney JR (1988) Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth Planet Sci Lett 90:87–104

    Article  Google Scholar 

  • Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607–1631

    Google Scholar 

  • Edmonds M, Pyle DM, Oppenheimer CM (2001) A model for degassing at Soufrière Hills Volcano, Montserrat, West Indies based on geochemical data. Earth Planet Sci Lett 186:159–173

    Article  Google Scholar 

  • Eychenne J, Le Pennec JL, Troncoso L, Gouhier M, Nedelec JM (2012) Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74:187–205

    Article  Google Scholar 

  • Fee D, Garces M, Steffke A (2010) Infrasound from Tungurahua Volcano 2006–2008: Strombolian to Plinian eruptive activity. J Volcanol Geotherm Res 193:67–81

    Article  Google Scholar 

  • Fine GJ, Stolper E (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contrib Mineral Petrol 91:105–121

    Article  Google Scholar 

  • Ford CE, Russell DG, Craven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–266

    Article  Google Scholar 

  • Gaetani GA, O’Leary JA, Shimizu N, Bucholz CE, Newville M (2012) Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40:915–918

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Giordano D, Russel JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Hall ML, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–21

    Article  Google Scholar 

  • Hall ML, Robin C, Samaniego P, Monzier M, Eissen JP, Mothes P, Yepes H, von Hillebrandt C, Beate B (2002) Mapa de peligros potenciales del Volcán Tungurahua. Scale 1:50000

    Google Scholar 

  • Hall ML, Steele AL, Mothes PA, Ruiz MC (2013) Pyroclastic density currents (PDC) of the 16–17 August 2006 eruptions of Tungurahua volcano, Ecuador: Geophysical registry and characteristics. J Volcanol Geotherm Res 265:78–93

    Article  Google Scholar 

  • Johnson DM, Hooper PR, Conrey RM (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv X-Ray Anal 41:843–867

    Google Scholar 

  • Johnson ER, Wallace PJ, Cashman KV, Granados HD (2011) Degassing of volatiles (H2O, CO2, S, Cl) during ascent, crystallization, and eruption at mafic monogenetic volcanoes in central Mexico. J Volcanol Geotherm Res 197:225–238

    Article  Google Scholar 

  • Kelfoun K, Samaniego P, Palacios P, Barba D (2009) Testing the suitability of frictional behavior for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71:1057–1075

    Article  Google Scholar 

  • King PL, Vennemann TW, Holloway JR, Hervig RL, Lowenstern JB, Forneris JF (2002) Analytical techniques for volatiles: a case study using intermediate (andesitic) glasses. Am Mineral 87:1077–1089

    Google Scholar 

  • Lloyd AS, Plank T, Ruprecht P, Hauri EH, Rose W (2013) Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib Mineral Petrol 165:129–153

    Article  Google Scholar 

  • Luhr JF (2001) Glass inclusions and melt volatile contents at Parícutin Volcano, Mexico. Contrib Mineral Petrol 142:261–283

    Article  Google Scholar 

  • Métrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev Mineral Geochem 69:363–402

    Article  Google Scholar 

  • Molina I, Kumagai H, Le Pennec JL, Hall M (2005) Three-dimensional P-wave velocity structure of Tungurahua volcano Ecuador. J Volcanol Geotherm Res 147:144–156

    Article  Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufrière Hills volcano, Montserrat, West Indies. J Petrol 41:21–42

    Article  Google Scholar 

  • Nichols ARL, Wysoczanski RJ (2007) Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals. Chem Geol 242:371–384

    Article  Google Scholar 

  • Oppenheimer C, Pyle DM, Barclay J (eds) (2003) Volcanic degassing. Geology Society of London

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Roberge J, Delgado-Granados H, Wallace PJ (2009) Mafic magma recharge supplies high CO2 and SO2 gas fluxes from Popocatepetl volcano, Mexico. Geology 37:107–110

    Article  Google Scholar 

  • Roedder E (1984) Occurrence and significance of magmatic inclusions and silicate liquid immiscibility. Acta Geol Pol 34:139–178

    Google Scholar 

  • Roggensack K, Hervig RL, McKnight SB, Williams SN (1997) Explosive basaltic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style. Science 277:1639–1642

    Article  Google Scholar 

  • Rowe MC, Peate DW, Newbrough A (2011) Compositional and thermal evolution of olivine-hosted melt inclusions in small-volume basaltic eruptions: a ‘simple’ example from Dotsero Volcano, NW Colorado. Contrib Mineral Petrol 161:197–211

    Article  Google Scholar 

  • Samaniego P, Le Pennec JL, Robin C, Hidalgo S (2011) Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua. J Volcanol Geotherm Res 199:69–84

    Article  Google Scholar 

  • Severs MJ, Azbej T, Thomas JB, Mandeville CW, Bodnar RJ (2007) Experimental determination of H2O loss from melt inclusions during laboratory heating: Evidence from Raman spectroscopy. Chem Geol 237:358–371

    Article  Google Scholar 

  • Sparks RSJ (2003) Dynamics of magma degassing. Geol Soc Lond 213:5–22

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Siggurdsson H, Woods AW (1997) Volcanic plumes. Wiley, Chichester

    Google Scholar 

  • Troncoso L, Le Pennec JL, Jaya D, Vallée A, Mothes P, Arrais S (2006) Depósitos de caída de ceniza producidos durante las erupciones del volcán Tungurahua, 14 de julio y 16 de agosto de 2006. 181–188

  • von Seckendorff V, O’Neill HSC (1993) An experimental study of Fe–Mg partitioning between olivine and orthopyroxene at 1173 K and 1423 K and 1.6 GPa. Contrib Mineral Petrol 113:196–207

    Article  Google Scholar 

  • Wada K (1995) Fractal structure of heterogeneous ejecta from the Meakan volcano, eastern Hokkaido, Japan: implications for mixing mechanism in a volcanic conduit. J Volcanol Geotherm Res 66:69–79

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas; concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Article  Google Scholar 

  • Wilson L, Sparks RSJ, Walker GP (1980) Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys J R Astro Soc 63:117–148

    Article  Google Scholar 

  • Wysoczanski RJ, Tani K (2006) Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: an example from the Izu-Bonin arc. J Volcanol Geotherm Res 156:302–314

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Instituto Geofisico for introducing us to this fascinating volcano and for their collegial logistical support. This work was supported by the National Science Foundation grant EAR 0838153. The authors thank Jon Blundy, Olivier Reubi, and one anonymous reviewer for their thoughtful remarks and constructive suggestions on previous versions of this manuscript. We also would like to thank Jim Gardner for his invaluable editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madison L. Myers.

Additional information

Editorial responsibility: J.E. Gardner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myers, M.L., Geist, D.J., Rowe, M.C. et al. Replenishment of volatile-rich mafic magma into a degassed chamber drives mixing and eruption of Tungurahua volcano. Bull Volcanol 76, 872 (2014). https://doi.org/10.1007/s00445-014-0872-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0872-0

Keywords

Navigation