Skip to main content
Log in

Photosynthetic performance of the aquatic macrophyte Althenia orientalis to solar radiation along its vertical stems

  • Physiological ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We have studied the plasticity of the photosynthetic apparatus in the endangered aquatic macrophyte Althenia orientalis to the gradient of light availability within its meadow canopy. We determined diurnal change in situ irradiance, light quality, in vivo chlorophyll a fluorescence, ex situ oxygen evolution rates, respiration rate and pigment concentration. The levels of photosynthetic photon flux density (PFD) and ultraviolet radiation (UVR) and the red/far-red ratio decreased with depth within the canopies of A. orientalis. Apical leaves had a greater decrease of the maximal quantum yield (F v/F m) in the morning and a faster recovery rate in the afternoon than those in the basal ones. The relative electron transport rate (ETRr) was not saturated at any time of the day, even in the apical leaves that received the highest light. The maximum light-saturated rate of gross photosynthesis (GPmax) took place in apical leaves around noon. The chlorophyll a/b ratio values were higher, and the chlorophyll/carotenoid ratio values lower, in apical leaves than basal ones. The highest concentrations in total carotenoids were reached in the apical leaves around noon. A. orientalis has a high capacity to acclimatize to the changes in the light environment, both in quality and quantity, presenting sun and shade leaves in the same stem through the vertical gradient in the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JM, Chow WS, De Las Rivas J (2008) Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma. Photosynth Res 98:575–587

    Article  PubMed  CAS  Google Scholar 

  • Araujo WL, Dias PC, Morales G, Celin E, Cunha R, Barros R, DaMatta F (2008) Limitations to photosynthesis in coffee leaves from different canopy positions. Plant Physiol Bioch 46:884–890

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluortescence: a probe of photosyntheis in vivo. Annu Rev Plant Biol 58:89–113

    Article  Google Scholar 

  • Cai Z-Q, Rijkers T, Bongers F (2005) Photosynthetic acclimation to light changes in tropical monsoon forest woody species differing in adult stature. Tree Physiol 25:1023–1031

    PubMed  CAS  Google Scholar 

  • Chelle M, Evers JB, Combes D, Varlet-Grancher C, Vos J, Andrieu B (2007) Simulation of the three-dimensional distribution of the red:far-red ratio within crop canopies. New Phytol 176(1):223–234

    Article  PubMed  Google Scholar 

  • Chow WS, Kim E-H, Horton P, Anderson JM (2005) Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem Photobiol Sci 4:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Conde-Álvarez RM (2001) Variaciones espacio-temporales y ecofisiológicas de los macrófitos acuáticos de la laguna atalasohalina de Fuente de Piedra (Sur de la Península Ibérica). PhD thesis. University of Malaga, Malaga

  • Conde-Álvarez RM, Pérez-Rodríguez E, Altamirano M, Nieto JM, Abdala R, Figueroa FL, Flores-Moya A (2002) Photosynthetic performance and pigment content in the aquatic liverwort Riella helicophylla under natural solar irradiance and solar irradiance without ultraviolet light. Aquat Bot 73(1):47–61

    Article  Google Scholar 

  • Conde-Álvarez RM, Figueroa FL, Bañares-España E, Nieto-Caldera JM (2008) Photoprotective role of inflorescence and UV-radiation effects on pollen viability of different freshwater plants. Aquat Sci 70:57–64

    Article  Google Scholar 

  • Cook C, Guo YH (1990) A contribution to the natural history of Althenia filiformis Petit (Zannichelliaceae). Aquat Bot 38:261–281

    Article  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Mattoo AK (2008) Photoprotection, photoinhibition, genes regulation and environment. Springer SBM, Dordrecht

    Google Scholar 

  • Duncan MJ, Foreman RE (1980) Phytochrome-mediated stipe elongation in the kelp Nereocystis (Phaeophyceae). J Phycol 16:138–142

    Article  CAS  Google Scholar 

  • Dymova OV, Golovko TK (2007) Pigment apparatus in Ajuga reptans plants as affected by adaptation to light growth conditions. Russ J Plant Physl 54(1):39–45

    Article  CAS  Google Scholar 

  • Ekelund NGA (2000) Interactions between photosynthesis and light-enhanced dark respiration (LEDR) in the flagellate Euglena gracilis after irradiation with ultraviolet radiation. J Photochem Photobiol B: Biol 55:63–69

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Cambridge

    Google Scholar 

  • Figueroa FL (1996) Underwater light signals: role of algal photoreceptors in the natural environments. Giorn Bot It 130:608–623

    Google Scholar 

  • Figueroa FL, Mercado J, Jiménez C, Salles S, Aguilera J, Sánchez-Saavedra MP, Häder D-P, Montero O, Lubián L (1997a) Relation between bio-optical characteristics and photoinhibition of phytoplankton. Aquat Bot 59:237–251

    Article  CAS  Google Scholar 

  • Figueroa FL, Ruiz R, Sáez E, Niell FX (1997b) Spectral light attenuation and phytoplankton distribution during as daily cycles in the reservoir La Concepción, Sourthern Spain. Arch Hydrobiol 140:71–90

    Google Scholar 

  • Fischer BB, Wiesendanger M, Eggen RIL (2006) Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions. Plant Cell Environ 47(8):1135–1145

    CAS  Google Scholar 

  • Flores-Moya A, Gómez I, Viñegla B, Altamirano M, Pérez-Rodríguez E, Maestre C, Caballero R, Figueroa F (1998) Effects of solar radiation on the endemic Mediterranean red alga Rissoella verruculosa: photosynthetic performance, pigment content and activities of enzymes related to nutrient uptake. New Phytol 139:673–683

    Article  CAS  Google Scholar 

  • Franklin KA (2008) Shade avoidance. New Phytol 179:930–944

    Article  PubMed  CAS  Google Scholar 

  • Franklin L, Forster R (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–232

    Google Scholar 

  • Franklin LA, Osmond CB, Larkum AWD (2003) Photoinhibition, UV-B and algal photosynthesis. In: Larkum AW, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 351–384

    Chapter  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990(1):87–92

    CAS  Google Scholar 

  • Glenn DM, Wunsche J, McIvor I, Nissen R, George A (2008) Ultraviolet radiation effects on fruit surface respiration and chlorophyll fluorescence. J Hortic Sci Biotech 83(1):43–50

    Google Scholar 

  • Häder D-P, Figueroa F (1997) Photoecophysiology of marine macroalgae. Photochem Photobiol B: Biol 66(1):1–14

    Article  Google Scholar 

  • Henley W (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Holmes MG (1981) Spectral distribution of radiation within plant canopies. In: Smith H (ed) Plants and daylight spectrum. Academic Press, New York, pp 147–158

    Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  PubMed  CAS  Google Scholar 

  • Kato MC, Hikosaka K, Hirose T (2002) Photoinactivation and recovery of photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability. Funct Plant Biol 29:787–795

    Article  CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Phys 42:313–349

    Article  CAS  Google Scholar 

  • Lee H-Y, Hong Y-N, Chow WS (2001) Photoinactivation of photosynthesis II complexes and photoprotection by non-functional neigbours in Capsicum annuum L. leaves. Planta 212:332–342

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Kluwer, Dordrecht, pp 713–736

    Google Scholar 

  • Lichtenthaler HK, Babani F, Langsdorf G (2007) Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth Res 93:235–244

    Article  PubMed  CAS  Google Scholar 

  • López-Figueroa F (1992) Diurnal variation in pigment content in Porphyra laciniata and Chondrus crispus and its relation to the diurnal changes of underwater light quality and quantity. Mar Biol 13:285–305

    Google Scholar 

  • López-Figueroa FD, Niell FX (1989) Red Light and blue light regulation photoreceptors controlling chlorophyll a synthesis in the red alga Porphyra umbilicalis and in the green alga Ulva rigida. Physiol Plant 76:391–397

    Google Scholar 

  • López-Figueroa FD, Niell FX (1990) Effects of light quality on chlorophyll and biliprotein accumulation in seaweeds. Mar Biol 104:321–327

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. John Wiley & Sons, New York

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51(345):659–668

    Article  PubMed  CAS  Google Scholar 

  • Muraoka H, Tang Y, Terashima I, Koizumi H, Washitan I (2000) Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ 23:235–250

    Article  CAS  Google Scholar 

  • Noguchi K, Terashima I (1997) Different regulation of leaf respiration between Spinacia oleracea, a sun species and Alocasia odora, a shade species. Physiol Plant 101:1–7

    Article  CAS  Google Scholar 

  • Nuñez-Oliveira E, Arroniz-Crespo M, Martínez-Abaigar J, Tomás R, Betancourt N (2005) Assessing the UV-B tolerance of sun and shade samples of two aquatic bryophytes using short-term tests. Bryologist 10:435–448

    Article  Google Scholar 

  • Romalcho J, Lauriano J, Nunes M (2000) Changes in photosynthetic performance of Ceratonia siliqua in summer. Photosynthetica 38(3):393–396

    Google Scholar 

  • Rose CD, Durako MJ (1994) Induced photomorphogenesis by an altered R:FR light ratio in axenic Ruppia maritima L. Bot Mar 37:531–535

    Article  Google Scholar 

  • Rüdiger W, López-Figueroa F (1992) Photoreceptors in algae. Photochem Photobiol 55:949–954

    Article  Google Scholar 

  • Salles S, Aguilera J, Figueroa F (1996) Light field in algal canopies: changes in spectral light ratios and growth of Porphyra leucosticta Thur in Le Jol. Sci Mar 60[Suppl 1]:29–38

    Google Scholar 

  • Schafer C, Schmidt E (1991) Light acclimation potential and xanthophyll cycle pigments in photoautotrophic suspension cells of Chenopodium rubrum. Physiol Plant 82(3):440–448

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of ondulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Smith H (1982) Light quality, photoreception and plant strategy. Annu Rev Plant Phys 33:481–518

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York

    Google Scholar 

  • Stroch M, Kuldová K, Kalina J, Spunda V (2008) Dynamics of the xanthophyll cycle and non-radiative dissipation of absorbed light energy during exposure of Norway spruce to high irradiance. J Plant Physiol 165:612–622

    Article  PubMed  CAS  Google Scholar 

  • Talarico L (1996) Phycobiliproteins and phycobilisomes in red algae: adaptive responses to light. Sci Mar 60[Suppl 1]:205–222

    CAS  Google Scholar 

  • Talarico L, Maranzana G (2000) Light and adaptive responses in red macroalgae: an overview. J Photochem Photobiol B 56(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Tomasko DA (1992) Variation in growth form of shoal grass (Halodule wrightii) due to changes in the spectral composition of light below a canopy of turtle grass (Thalassia testudinum). Estuaries 15:214–217

    Article  CAS  Google Scholar 

  • Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447

    Article  PubMed  CAS  Google Scholar 

  • Warren CR, Adams MA (2001) Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant, Cell Environ 24:597–609

    Article  CAS  Google Scholar 

  • Wellburn A (1994) The spectral determination of Chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Yamazaki J, Kamimura Y, Okada M, Sugimura Y (1999) Changes in photosynthetic characteristics and photosystem stoichiometries in the lower leaves in rice seedlings. Plant Sci 148:155–163

    Article  CAS  Google Scholar 

  • Zhang SB, Hu H, Xu K, Li ZR, Yang YP (2007) Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. J Plant Physiol 164:611–662

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of Spain (Project CICYT AMB97-1021-C02-01; CGL2008-05407-C03-01) and by Junta de Andalucía to the research group RNM-295 and RNM-115. Luis and Pilar collaborated with us in the field work. The authors would also like to acknowledge to the anonymous reviewers for their insightful comments, which helped to significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael M. Conde-Álvarez.

Additional information

Communicated by Kouki Hikosaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde-Álvarez, R.M., Bañares-España, E., Nieto-Caldera, J.M. et al. Photosynthetic performance of the aquatic macrophyte Althenia orientalis to solar radiation along its vertical stems. Oecologia 166, 853–862 (2011). https://doi.org/10.1007/s00442-011-1941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-1941-0

Keywords

Navigation