Skip to main content

Advertisement

Log in

Soil shapes community structure through fire

  • Community ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Recurrent wildfires constitute a major selecting force in shaping the structure of plant communities. At the regional scale, fire favours phenotypic and phylogenetic clustering in Mediterranean woody plant communities. Nevertheless, the incidence of fire within a fire-prone region may present strong variations at the local, landscape scale. This study tests the prediction that woody communities on acid, nutrient-poor soils should exhibit more pronounced phenotypic and phylogenetic clustering patterns than woody communities on fertile soils, as a consequence of their higher flammability and, hence, presumably higher propensity to recurrent fire. Results confirm the predictions and show that habitat filtering driven by fire may be detected even in local communities from an already fire-filtered regional flora. They also provide a new perspective from which to consider a preponderant role of fire as a key evolutionary force in acid, infertile Mediterranean heathlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bayer RJ, Puttock CF, Kelchner SA (2000) Phylogeny of South African Gnaphalieae (Asteraceae) based on two noncoding chloroplast sequences. Am J Bot 87:259–272

    Article  CAS  PubMed  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    Article  PubMed  Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, London

    Google Scholar 

  • Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian oak communities. Am Nat 163:823–843

    Article  CAS  PubMed  Google Scholar 

  • Clarke PJ (2002) Habitat islands in fire-prone vegetation: do landscape features influence community composition? J Biogeogr 29:677–684

    Article  Google Scholar 

  • Clarke PJ, Knox KJE (2002) Post-fire response of shrubs in the tablelands of eastern Australia: do existing models explain habitat differences? Aust J Bot 50:53–62

    Article  Google Scholar 

  • Coca-Pérez M (2001) Árboles, arbustos y matas del Parque Natural Los Alcornocales (2nd edn). OrniTour, Jerez

    Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in Mediterranean-climate regions. Trends Ecol Evol 11:362–366

    Article  Google Scholar 

  • Daniau AL, Sánchez-Goñi MF, Beaufort L, Laggoun-Défarge F, Loutre MF, Duprat J (2007) Dansgaard–Oeschger climatic variability revealed by fire emissions in southwestern Iberia. Quat Sci Rev 26:1369–1383

    Article  Google Scholar 

  • Elvira-Martín L, Hernando-Lara C (1989) Inflamabilidad y energía de las especies de sotobosque. Monografías INIA no. 68, Madrid

  • Garrido B, Hidalgo R (1998) Evaluación de los ecosistemas de la cuenca fluvial del río Hozgarganta. Estudio botánico. Unpublished report. Junta de Andalucía, Sevilla

  • González-Donoso JM, Linares D, Martín-Algarra A, Serrano F (1987) El Complejo tectosedimentario del Campo de Gibraltar. Datos sobre su edad y significado geológico. Bol R Soc Esp Hist Nat (Geol) 82:233–251

    Google Scholar 

  • Guzmán B, Vargas P (2005) Systematics, character evolution, and biogeography of Cistus L. (Cistaceae) based on ITS, trnL-trnF, and matK sequences. Mol Phyl Evol 37:644–660

    Article  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Helmus MR, Savage K, Diebel MW, Maxted JT, Ives AR (2007) Separating the determinants of phylogenetic community structure. Ecol Lett 10:917–925

    Article  PubMed  Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164

    Article  Google Scholar 

  • Keeley JE (1986) Resilience of Mediterranean shrub communities to fires. In: Dell B, Hopkins AJM, Lamont BB (eds) Resilience of Mediterranean-type ecosystems. Junk, Dordrecht, pp 95–112

    Google Scholar 

  • Keeley JE, Bond WJ (1997) Convergent seed germination in South African fynbos and Californian chaparral. Plant Ecol 133:153–167

    Article  Google Scholar 

  • Kellman M (1984) Synergistic relationships between fire and low soil fertility in Neotropical savannas: a hypothesis. Biotropica 16:158–160

    Article  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66

    Article  CAS  Google Scholar 

  • Kron KA, Chase MW (1993) Systematics of the Ericaceae, Empetraceae, Epacridaceae and related taxa based upon rbcL sequence data. Ann Miss Bot Gard 80:735–741

    Article  Google Scholar 

  • Legendre P, Lapointe F, Casgrain P (1994) Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:1487–1499

    Article  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant–litter–soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochem 42:189–220

    Article  CAS  Google Scholar 

  • Ojeda F (2001) El fuego como factor clave en la evolución de plantas mediterráneas. In: Zamora R, Pugnaire FI (eds) Ecosistemas Mediterráneos: análisis funcional. Colección Textos Universitarios 32. CSIC, Madrid, pp 319–349

    Google Scholar 

  • Ojeda F, Arroyo J, Marañón T (1995) Biodiversity components and conservation of Mediterranean heathlands in southern Spain. Biol Conserv 72:61–72

    Article  Google Scholar 

  • Ojeda F, Marañón T, Arroyo J (1996) Patterns of ecological, chorological and taxonomic diversity on both sides of the Strait of Gibraltar. J Veg Sci 7:63–72

    Article  Google Scholar 

  • Ojeda F, Marañón T, Arroyo J (2000) Plant biodiversity in the Aljibe Mountains (S. Spain): a comprehensive account. Biodivers Conserv 9:1323–1343

    Article  Google Scholar 

  • Orians GH, Milewski AV (2007) Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol Rev 82:393–423

    Article  PubMed  Google Scholar 

  • Paula S, Arianoutsou M, Kazanis D, Lloret F, Buhk C, Ojeda F, Luna B, Moreno JM, Rodrigo A, Espelta JM, Palacio S, Fernández-Santos B, Fernandes PM, Pausas JG (2009) Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420

    Article  Google Scholar 

  • Pausas JG, Bradstock RA (2007) Fire persistence traits of plants along a productivity and disturbance gradient in Mediterranean shrublands of SE Australia. Global Ecol Biogeogr 16:330–340

    Article  Google Scholar 

  • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. BioScience (in press)

  • Pausas JG, Verdú M (2005) Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: a phylogenetic approach. Oikos 109:196–202

    Article  Google Scholar 

  • Pausas JG, Verdú M (2008) Fire reduces morphospace occupation in plant communities. Ecology 89:2181–2186

    Article  PubMed  Google Scholar 

  • Pausas JG, Bradstock RA, Keith DA, Keeley JE, GCTE Fire Network (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100

    Article  Google Scholar 

  • Pausas JG, Keeley JE, Verdú M (2006) Inferring differential evolutionary processes of plant persistence traits in Northern Hemisphere Mediterranean fire-prone ecosystems. J Ecol 94:31–39

    Article  Google Scholar 

  • Prasad R, Power JF (1999) Soil fertility management for sustainable agriculture. Lewis, Boca Raton

    Google Scholar 

  • Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminée JHJ, van Groenendael JM (2008) Less lineages–more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol Lett 11:809–819

    Article  PubMed  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Rodríguez FJ, Pérez-Barrales R, Ojeda F, Vargas P, Arroyo J (2008) The Strait of Gibraltar as a melting pot for plant biodiversity. Quat Sci Rev. doi:10.1016/j.quascirev.2008.08.006

  • Schroth G, Lehmann J, Barrios E (2003) Soil nutrient availability and acidity. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility: concepts and research methods. CABI, Wallingford, pp 93–130

    Google Scholar 

  • Schwilk DW (2003) Flammability is a niche construction trait: canopy architecture affects fire intensity. Am Nat 162:725–733

    Article  PubMed  Google Scholar 

  • Stevens PF (2001) Angiosperm phylogeny website. Version 6. May 2005. http://www.mobot.org/MOBOT/research/APweb/

  • Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics. Ecology 87:2418–2424

    Article  PubMed  Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier JM (1996) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  • van der Valk AG (1981) Succession in wetlands: a Gleasonian approach. Ecology 62:688–696

    Article  Google Scholar 

  • van Wilgen BW, Higgins KB, Bellstedt DU (1990) The role of vegetation structure and fuel chemistry in excluding fire from forest patches in the fire-prone fynbos shrublands of South Africa. J Ecol 78:210–222

    Article  Google Scholar 

  • Verdú M, Pausas JG (2007) Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. J Ecol 95:1316–1323

    Article  Google Scholar 

  • Wallander E, Albert VA (2000) Phylogeny and classification of Oleaceae based on RPS 16 and TRN L-F sequence data. Am J Bot 87:1827–1841

    Article  CAS  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek M, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2005) Phylocom: software for the analysis of community phylogenetic structure and character evolution, version 3.34b. http://www.phylodiversity.net/phylocom

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  Google Scholar 

  • Woolhouse HW (1981) Soil acidity, aluminium toxicity and related problems in the nutrient environment of heathlands. In: Specht RL (ed) Heathlands and related shrublands. Analytical studies: ecosystems of the world 9B. Elsevier, Amsterdam, pp 215–224

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by projects VAMPIRO (CGL2008-05289-C02-01/BOS) and PERSIST (CGL2006-07126/BOS), financed by the Spanish Ministerio de Ciencia e Innovación, and project P07-RNM-02869, financed by the Junta de Andalucía regional government (Spain). Fieldwork was carried out under permission and complied with legal requirements of the Andalusian regional government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ojeda.

Additional information

Communicated by Jon Keeley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojeda, F., Pausas, J.G. & Verdú, M. Soil shapes community structure through fire. Oecologia 163, 729–735 (2010). https://doi.org/10.1007/s00442-009-1550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1550-3

Keywords

Navigation