Skip to main content
Log in

Molecular genetic evidence for polyandry in Ascaris suum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The aim of this study was to determine whether single Ascaris suum female could mate with multiple males. Seven sex-linked microsatellite markers were employed and paternal genetic analyses were conducted. Totally, 62 offspring individuals from three single females were screened, and the numbers of fathers in each family were determined using allele counting methods and the program GERUD, version 2.0. The seven sex-linked microsatellite loci showed high polymorphism and revealed that one out of three families (allele counts) and two out of three families (GERUD) of the sampled families had at least two sires (2–6), indicating that females of A. suum can mate with multiple males. These findings provide the first molecular genetic evidence for polyandry of female A. suum and lay a foundation for further studies on the impacts of polyandry on population genetic parameters, the parasite population’s genetic diversity, the potential for infection of different host species, and for the rate of spread of drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson TJC (1995) Ascaris infections in humans from North America: molecular evidence for cross-infection. Parasitology 110:215–219

    Article  PubMed  Google Scholar 

  • Anderson JD, Williams-Blangero S, Anderson TJC (2003) Spurious genotype in female nematodes resulting from contamination with male DNA. J Parasitol 89:1232–1234

    Article  CAS  PubMed  Google Scholar 

  • Arthur SE (2009) Caenorhabditis elegans pheromones regulate multiple complex behaviors. Curr Opin Neurobiol 19:378–388

    Article  Google Scholar 

  • Bowcok AM, Weber JS, Ford OR (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  Google Scholar 

  • Cabrera BD (1984) Reinfection and infection rates of ascariasis in relation to seasonal variation in the Philippines. Southeast Asian J Trop Med Public Health 15:394–401

    CAS  PubMed  Google Scholar 

  • Carl DS (2010) Genetic patterns of paternity and testes size in mammals. PLoS ONE 5:A152–A157

    Google Scholar 

  • Carlsgart J, Roepstorff A, Nejsum P (2009) Multiplex PCR on single unembryondated Ascaris (roundworm) eggs. Parasitol Res 104:939–943

    Article  PubMed  Google Scholar 

  • Chan MS, Medley GF, Jamison D, Bundy D (1994) The evaluation of potential global morbidity attributable to intestinal nematode infections. Parasitology 109:373–387

    Article  PubMed  Google Scholar 

  • Criscione CD, Blouin MS (2006) Minimal selfing, few clones, and no among-host genetic structure in a hermaphroditic parasite with asexual larval propagation. Evolution 60:553–562

    CAS  PubMed  Google Scholar 

  • Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14:2247–2257

    Article  CAS  PubMed  Google Scholar 

  • Criscione CD, Anderson JD, Raby K, Sudimack D, Subedi J et al (2007a) Microsatellite markers for the human nematode parasite Ascaris lumbricoides: development and assessment of utility. J Parasitol 93:704–708

    Article  CAS  PubMed  Google Scholar 

  • Criscione CD, Anderson JD, Sudimack D, Peng WD, Jha B et al (2007b) Disentangling hybridization and host colonization in parasitic roundworms of humans and pigs. Proc Biol Sci 274:2669–2677

    Article  CAS  PubMed  Google Scholar 

  • Crompton DWT (1989) Biology of Ascaris lumbricoides. In: Crompton DWT, Nesheim MC, Pawlowski ZS (eds) Ascariasis and its prevention and control. Taylor & Francis, London, pp 10–44

    Google Scholar 

  • Croshaw DA, Peters MB, Glenn TC (2009) Comparing the performance of analytical techniques for genetic parentage of half-sib progeny arrays. Genet Res 91:313–325

    Article  CAS  Google Scholar 

  • Cutullé C, Jonsson NN, Seddon JM (2010) Multiple paternity in Rhipicephalus (Boophilus) microplus confirmed by microsatellite analysis. Exp Appl Acarol 50:51–58

    Article  PubMed  Google Scholar 

  • Daniela L, Adauto A, Ana C, Alena M (2009) Molecular diagnosis of ascariasis from human feces and description of a new Ascaris sp. genotype in Brazil. Vet Parasitol 163:167–170

    Article  Google Scholar 

  • Daniela L, Adauto A, Ana C, Alena M (2010) ITS1 intra-individual variability of Ascaris isolates from Brazil. Parasitol Int 59:93–96

    Article  Google Scholar 

  • David G (2000) Longevity and ageing in parasitic and free-living nematodes. Biogerontology 1:289–307

    Article  Google Scholar 

  • Elkins DB, Haswell-elkins M (1989) The weight/length profiles of Ascaris lumbricoides within a human community before mass treatment and following reinfection. Parasitology 99:293–299

    Article  PubMed  Google Scholar 

  • Holland CV (2009) Predisposition to ascariasis: patterns, mechanisms and implications. Parasitology 136:1537–1547

    Article  CAS  PubMed  Google Scholar 

  • Huang YJ (1998) Studies on nematode chromosome in Ascaridata. Dongwuxue Zazhi 23:41–43 (in Chinese)

    Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    Article  CAS  PubMed  Google Scholar 

  • Johnson PCD, Hadfield JD, Webster LMI, Adam A, Mable BK et al (2010) Bayesian paternity analysis and mating patterns in a parasitic nematode, Trichostrongylus tenuis. Heredity 104:573–582

    Article  CAS  PubMed  Google Scholar 

  • Jones AG (2005) GERUD 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol Ecol Notes 5:708–711

    Article  CAS  Google Scholar 

  • Jungersen G, Eriksen L, Nansen P, Fagerholm HP (1997) Sex-manipulated Ascaris suum infection in pigs: implications for reproduction. Parasitology 115:439–442

    Article  PubMed  Google Scholar 

  • Leigh WS, Maxine B, Jonathan PE (2008) Molecular evidence for multiple paternity in a feral population of green swordtails. J Hered 99:610–615

    Article  Google Scholar 

  • Loreille O, Roumat E, Verneau O (2001) Ancient DNA from Ascaris: extraction amplification sequences from eggs collected in coprolites. Int J Parasitol 31:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, England PR (1999) Statistical analysis of microsatellite DNA data. Trends Ecol Evol 14:253–256

    Article  PubMed  Google Scholar 

  • Monzon RB (1991) Replacement patterns of Ascaris lumbricoides populations in Filipino children. Southeast Asian J Trop Med Public Health 22:605–610

    CAS  PubMed  Google Scholar 

  • Nejsum P, Parker ED, Frydenberg J, Roepstorff A, Boes J et al (2005) Ascariasis is a zoonosis in Denmark. J Clin Microbiol 43:1142–1148

    Article  PubMed  Google Scholar 

  • Nejsum P, Carsten G, Murrell KD (2006) Molecular evidence for the infection of zoo chimpanzees by pig Ascaris. Vet Parasitol 139:203–210

    Article  CAS  PubMed  Google Scholar 

  • Peng WD, Zhou XM, Crompton DWT (1998a) Ascariasis in China. Adv Parasitol 41:109–148

    Article  CAS  PubMed  Google Scholar 

  • Peng WD, Zhou XM, Cui X, Crompton DWT, Whitehead RR et al (1998b) Transmission and natural regulation of infection with Ascaris lumbricoides in a rural community in China. J Parasitol 84:252–258

    Article  CAS  PubMed  Google Scholar 

  • Peng WD, Zhou XM, Cui X (2002) Comparison of the structure of natural and re-established population of ascaris in humans in a rural community of Jiangxi, China. Parasitology 124:641–647

    Article  CAS  PubMed  Google Scholar 

  • Peng WD, Yuan K, Hu M, Zhou XM, Gasser RB (2005) Mutation scanning-coupled analysis of haplotypic variability in mitochondrial DNA regions reveals low gene flow between human and porcine Ascaris in endemic regions of China. Electrophoresis 26:4317–4326

    Article  CAS  PubMed  Google Scholar 

  • Peng WD, Yuan K, Hu M, Peng G, Zhou X et al (2006) Experimental infections of pigs and mice with selected genotypes of Ascaris. Parasitology 133:651–657

    Article  CAS  PubMed  Google Scholar 

  • Purrenhage JL, Niewiarowski PH, Moore FBG (2009) Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol Ecol 18:235–247

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff A, Nansen P (1994) Epidemiology and control of helminth infections in pigs under intensive and non-intensive production systems. Vet Parasitol 54:369–385

    Article  Google Scholar 

  • Rousset F (2008) Genepop: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Seo BS (1990) Epidemiology and control of ascariasis in Korea. Korean J Parasitol 28(Suppl):S49–S61

    Article  Google Scholar 

  • Simmons LW, Beveridge M, Kennington WJ (2007) Polyandry in the wild: temporal changes in female mating frequency and sperm competition intensity in natural populations of the tettigoniid Requena verticalis. Mol Ecol 16:4613–4623

    Article  CAS  PubMed  Google Scholar 

  • Uller T, Olsson M (2008) Multiple paternity in reptiles: patterns and processes. Mol Ecol 17:256–258

    Article  Google Scholar 

  • Van-Dongen WFD, Mulder RA (2009) Multiple ornamentation, female breeding synchrony, and extra-pair mating success of golden whistlers (Pachycephala pectoralis). J Ornithol 150:607–620

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (30972580/C150702). Thanks also to Professor Malcolm Kennedy at Glasgow University, UK, for kindly reading early manuscript and to Professor Hong Yijiang at Nanchang University, China, for technical helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Yuan, K., Tang, X. et al. Molecular genetic evidence for polyandry in Ascaris suum . Parasitol Res 108, 703–708 (2011). https://doi.org/10.1007/s00436-010-2116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2116-3

Keywords

Navigation