Skip to main content

Advertisement

Log in

Gut microbiota imbalance and chaperoning system malfunction are central to ulcerative colitis pathogenesis and can be counteracted with specifically designed probiotics: a working hypothesis

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

In this work, we propose that for further studies of the physiopathology and treatment for inflammatory bowel diseases, an integral view of the conditions, including the triad of microbiota–heat shock proteins (HSPs)–probiotics, ought to be considered. Microbiota is the complex microbial flora that resides in the gut, affecting not only gut functions but also the health status of the whole body. Alteration in the microbiota’s composition has been implicated in a variety of pathological conditions (e.g., ulcerative colitis, UC), involving both gut and extra-intestinal tissues and organs. Some of these pathologies are also associated with an altered expression of HSPs (chaperones) and this is the reason why they may be considered chaperonopathies. Probiotics, which are live microorganisms able to restore the correct, healthy equilibrium of microbiota composition, can ameliorate symptoms in patients suffering from UC and modulate expression levels of HSPs. However, currently probiotic therapy follows ex-adiuvantibus criteria, i.e., treatments with beneficial effects but whose mechanism of action is unknown, which should be changed so the probiotics needed in each case are predetermined on the basis of the patient’s microbiota. Consequently, efforts are necessary to develop diagnostic tools for elucidating levels and distribution of HSPs and the microbiota composition (microbiota fingerprint) of each subject and, thus, guide specific probiotic therapy, tailored to meet the needs of the patient. Microbiota fingerprinting ought to include molecular biology techniques for sequencing highly conserved DNA, e.g., genes encoding 16S RNA, for species identification and, in addition, quantification of each relevant microbe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Macario AJL, Malz M, Conway de Macario E (2004) Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea. Front Biosci 9:1318–1332

    PubMed  CAS  Google Scholar 

  2. Macario AJL, Conway de Macario E (2009) The chaperoning system: physiology and pathology. Exp Med Rev 2–3:9–21. Available on-line at: http://www.unipa.it/giovanni.zummo

  3. Macario AJL, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489–1501

    PubMed  CAS  Google Scholar 

  4. Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release—evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282:31289–31301

    PubMed  CAS  Google Scholar 

  5. Macario AJL, Cappello F, Zummo G, Conway de Macario E (2010) Chaperonopathies of senescence and the scrambling of the interactions between the chaperoning and the immune systems. Ann N Y Acad Sci 1197:85–93

    PubMed  CAS  Google Scholar 

  6. Macario AJL (1995) Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics. Intl J Clin Lab Res 25:59–70

    CAS  Google Scholar 

  7. Macario AJL, Conway de Macario E (2007) Chaperonopathies by defect, excess, or mistake. Ann N Y Acad Sci 1113:178–191

    PubMed  CAS  Google Scholar 

  8. Cappello F, Caramori G, Campanella C et al (2011) Convergent sets of data from in vivo and in vitro methods point to an active role of HSP60 in chronic obstructive pulmonary disease pathogenesis. PLoS ONE 6:e28200

    PubMed  CAS  Google Scholar 

  9. Rodolico V, Tomasello G, Zerilli M et al (2010) HSP60 and HSP10 increase in colon mucosa of Crohn’s disease and ulcerative colitis. Cell Stress Chaperones 15:877–884

    PubMed  CAS  Google Scholar 

  10. Marino Gammazza A, Bucchieri F, Grimaldi LM et al (2012) The molecular anatomy of human HSP60 and its similarity with that of bacterial orthologs and acetylcholine receptor reveal a potential pathogenetic role of anti-chaperonin immunity in myasthenia gravis. Cell Mol Neurobiol 32:943–947

    CAS  Google Scholar 

  11. Cappello F, Conway de Macario E, Di Felice V, Zummo G, Macario AJL (2009) Chlamydia trachomatis infection and anti-HSP60 immunity: the two sides of the coin. PLoS Pathog 5:e1000552

    PubMed  Google Scholar 

  12. Chen T, Cao X (2010) Stress for maintaining memory: HSP70 as mobile messenger for innate immunity and adaptive immunity. Eur J Immunol 40:1541–1544

    PubMed  CAS  Google Scholar 

  13. Habich C, Burkart V (2007) Heat shock protein 60: regulatory role on innate immune cells. Cell Mol Life Sci 64:742–751

    PubMed  CAS  Google Scholar 

  14. Murshid A, Gong J, Calderwood SK (2012) The role of heat shock proteins in antigen cross presentation. Front Immunol 3:63

    PubMed  Google Scholar 

  15. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    PubMed  CAS  Google Scholar 

  16. Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) HSP60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194

    PubMed  CAS  Google Scholar 

  17. Merendino AM, Bucchieri F, Campanella C et al (2010) HSP60 is actively secreted by human tumor cells. PLoS ONE 5:e9247

    PubMed  Google Scholar 

  18. Campanella C, Bucchieri F, Merendino AM et al (2012) The odyssey of HSP60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PLoS ONE 7:e42008

    PubMed  CAS  Google Scholar 

  19. Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369:1627–1640

    PubMed  CAS  Google Scholar 

  20. Tomasello G, Bellavia M, Palumbo VD et al (2011) From gut microflora imbalance to mycobacteria infection: is there a relationship with chronic intestinal inflammatory diseases? Ann Ital Chir 82:361–368

    PubMed  Google Scholar 

  21. Tomasello G, Bellavia M, Damiano G, Gioviale MC, Lo Monte AI (2012) Possible relation between gut microflora composition and oncogenic risk: is stimulation of inflammation the one ring of connection? Rev Med Microbiol 23:52–57

    Google Scholar 

  22. Guarner F, Malagelada J-R (2003) Gut flora in health and disease. Lancet 361:512–519

    PubMed  Google Scholar 

  23. Abraham C, Cho JH (2009) Mechanisms of disease: inflammatory bowel disease. N Engl J Med 361:2066–2078

    PubMed  CAS  Google Scholar 

  24. Bellavia M, Damiano G, Gioviale MC et al (2011) Abnormal expansion of segmented filamentous bacteria in the gut: a role in pathogenesis of chronic inflammatory intestinal diseases? Rev Med Microbiol 22:45–47

    Google Scholar 

  25. Arsenau KO, Cominelli F (2009) Leukocytaferesis in ulcerative colitis: a possible alternative to biological therapy? Dig Liver Dis 41:551–552

    Google Scholar 

  26. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–521

    PubMed  CAS  Google Scholar 

  27. Llopis M, Antolin M, Carol M et al (2009) Lactobacillus casei downregulates commensals inflammatory signals in Crohn’s disease mucosa. Inflamm Bowel Dis 15:275–283

    PubMed  Google Scholar 

  28. Brand S (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58:1152–1167

    PubMed  CAS  Google Scholar 

  29. Ivanov II, de Llanos Frutos R, Manel N et al (2008) Specific microbiota direct the differentiation of Th17 cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349

    Google Scholar 

  30. Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    PubMed  CAS  Google Scholar 

  31. Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57:1470–1481

    PubMed  CAS  Google Scholar 

  32. Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15:1546–1558

    PubMed  CAS  Google Scholar 

  33. Lam V, Su J, Koprowski S et al (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26:1727–1735

    PubMed  CAS  Google Scholar 

  34. Howitt MR, Garrett WS (2012) A complex microworld in the gut: gut microbiota and cardiovascular disease connectivity. Nat Med 18:1188–1189

    PubMed  CAS  Google Scholar 

  35. Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63

    PubMed  CAS  Google Scholar 

  36. Gupta V, Garg R (2009) Probiotics. Indian J Med Microbiol 27:202–209

    PubMed  CAS  Google Scholar 

  37. Marteau PR, De Vrese M, Cellier CJ, Schrezenmeir J (2001) Protection from gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 73(Suppl. 2):430S–436S

    PubMed  CAS  Google Scholar 

  38. Drisko JA, Giles CK, Bischoff BJ (2003) Probiotics in health maintenance and disease prevention. Altern Med Rev 8:153–155

    Google Scholar 

  39. Moore WE, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61:3202–3207

    PubMed  CAS  Google Scholar 

  40. Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH (1994) Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhea and shedding of rotovirus. Lancet 344:1046–1049

    PubMed  CAS  Google Scholar 

  41. Caplan MS, Jilling T (2000) Neonatal necrotizing enterocolitis: possible role of probiotic supplementation. J Pediatr Gastroenterol Nutr 30:S18–S22

    PubMed  Google Scholar 

  42. Gorbach SL, Chang TW, Goldin B (1987) Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 2:1519

    PubMed  CAS  Google Scholar 

  43. Vanderhoof JA, Young RJ (1998) Use of probiotics in childhood gastrointestinal disorders. J Pediatr Gastroenterol Nutr 27:323–332

    PubMed  CAS  Google Scholar 

  44. Aiba Y, Suzuki N, Kabir AM, Takagi A, Koga Y (1998) Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am J Gastroenterol 93:2097–2101

    PubMed  CAS  Google Scholar 

  45. Guslandi M, Mezzi G, Sorghi M, Testoni PA (2000) Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 45:1462–1464

    PubMed  CAS  Google Scholar 

  46. Malin M, Verronen P, Korhonen H et al (1997) Dietary therapy with Lactobacillus GG, bovine colostrums or bovine immune colostrums in patients with juvenile chronic arthritis: evaluation of effect of gut defense mechanisms. Inflammopharmacology 5:219–236

    PubMed  CAS  Google Scholar 

  47. Murch SH (2001) Toll of allergy reduced by probiotics. Lancet 357:1057–1059

    PubMed  CAS  Google Scholar 

  48. Sanders ME, Klaenhammer TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84:319–331

    PubMed  CAS  Google Scholar 

  49. Tomasello G, Sciumè C, Rappa F et al (2011) HSP10, HSP70, and HSP90 immunohistochemical levels change in ulcerative colitis after therapy. Eur J Histochem 55:e38

    PubMed  CAS  Google Scholar 

  50. Tomasello G, Rodolico V, Zerilli M et al (2011) Changes in immunohistochemical levels and subcellular localization after therapy and correlation and colocalization with CD68 suggest a pathogenetic role of HSP60 in ulcerative colitis. Appl Immunohistochem Mol Morphol 19:552–561

    PubMed  CAS  Google Scholar 

  51. Scaldaferri F, Fiocchi C (2007) Inflammatory bowel disease: progress and current concepts of etiopathogenesis. J Dig Dis 8:171–178

    PubMed  CAS  Google Scholar 

  52. Ouwehand AC, Salminen S, Roberts PJ, Ovaska J, Salminen E (2003) Disease-dependent adhesion of lactic acid bacteria to the human intestinal mucosa. Clin Diagn Lab Immunol 10:643–646

    PubMed  Google Scholar 

  53. Kuwahara E, Asakura K, Nishiwaki Y et al (2012) Effects of family history on inflammatory bowel disease characteristics in Japanese patients. J Gastroenterol 47:96196–96198

    Google Scholar 

  54. Di Sabatino A, Biancheri P, Rovedatti L, Macdonald TT, Corazza GR (2012) Recent advances in understanding ulcerative colitis. Intern Emerg Med 7:103–111

    PubMed  Google Scholar 

  55. Yamamoto-Furusho JK (2009) Clinical epidemiology of ulcerative colitis in Mexico: a single hospital-based study in 20 year period (1987–2006). J Clin Gastroenterol 43:221–224

    PubMed  Google Scholar 

  56. Mendoza JL, Lana R, Taxonera C et al (2005) Extraintestinal manifestations in inflammatory bowel disease: differences between Crohn’s disease and ulcerative colitis. Med Clin (Barc) 125:297–300

    Google Scholar 

  57. Lakatos L, Pandur T, David G et al (2003) Association of extraintestinal manifestations of inflammatory bowel disease in a province of western Hungary with disease phenotype: results of a 25-year follow-up study. World J Gastroenterol 9:2300–2307

    PubMed  Google Scholar 

  58. Tomasello G, Bellavia M, Damiani F et al (2012) Argentum-quarz solution in the treatment of anorectal fistulas: is it possible a conservative approach? Med Hypotheses 79:542–543

    PubMed  CAS  Google Scholar 

  59. Levy C, Tremaine WJ (2002) Management of internal fistulas in Crohn’s disease. Inflamm Bowel Dis 8:106–111

    PubMed  Google Scholar 

  60. Terzić J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138(2101–2114):e5

    PubMed  Google Scholar 

  61. Nam SY, Kim N, Kim JS et al (2007) Heat shock protein gene 70-2 polymorphism is differentially associated with the clinical phenotypes of ulcerative colitis and Crohn’s disease. J Gastroenterol Hepatol 22:1032–1038

    PubMed  CAS  Google Scholar 

  62. Hu S, Ciancio MJ, Lahav M et al (2007) Translational inhibition of colonic epithelial heat shock proteins by IFN-gamma and TNF-alpha in intestinal inflammation. Gastroenterology 133:1893–1904

    PubMed  CAS  Google Scholar 

  63. Ludwig D, Stahl M, Ibrahim ET et al (1999) Enhanced intestinal expression of heat shock protein 70 in patients with inflammatory bowel diseases. Dig Dis Sci 44:1440–1447

    PubMed  CAS  Google Scholar 

  64. Otani S, Otaka M, Jin M et al (1997) Effect of preinduction of heat shock proteins on acetic acid-induced colitis in rats. Dig Dis Sci 42:833–846

    PubMed  CAS  Google Scholar 

  65. Petrof EO, Ciancio MJ, Chang EB (2004) Role and regulation of intestinal epithelial heat shock proteins in health and disease. Chin J Dig Dis 5:45–50

    PubMed  CAS  Google Scholar 

  66. Otaka M, Odashima M, Watanabe S (2006) Role of heat shock proteins (molecular chaperones) in intestinal mucosal protection. Biochem Biophys Res Commun 348:1–5

    PubMed  CAS  Google Scholar 

  67. Corrao S, Campanella C, Anzalone R et al (2010) Human HSP10 and early pregnancy factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sci 86:145–152

    PubMed  CAS  Google Scholar 

  68. van Eden W (1991) Heat-shock proteins as immunogenic bacterial antigens with the potential to induce and regulate autoimmune arthritis. Immunol Rev 121:5–28

    PubMed  Google Scholar 

  69. van Eden W, Wick G, Albani S, Cohen I (2007) Stress, heat shock proteins, and autoimmunity how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann NY Acad Sci 1113:217–237

    PubMed  Google Scholar 

  70. Clynes R, Maizes JS, Guinamard R et al (1999) Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 189:179–185

    PubMed  CAS  Google Scholar 

  71. Mayadas TN, Tsokos GC, Tsuboi N (2009) Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation 120:2012–2024

    PubMed  Google Scholar 

  72. Shashidharamurthy R, Hennigar RA, Fuchs S et al (2008) Extravasations and emigration of neutrophils to the inflammatory site depend on the interaction of immune-complex with Fcgamma receptors and can be effectively blocked by decoy Fcgamma receptors. Blood 111:894–904

    PubMed  CAS  Google Scholar 

  73. De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 16:235–249

    PubMed  CAS  Google Scholar 

  74. Xie J, Zhu H, Guo L et al (2010) Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J Immunol 185:2306–2313

    PubMed  CAS  Google Scholar 

  75. Habich C, Kempe K, Burkart V et al (2004) Identification of the heat shock protein 60 epitope involved in receptor binding on macrophages. FEBS Lett 568(1–3):65–69

    PubMed  CAS  Google Scholar 

  76. Meijer BJ, Dieleman LA (2011) Probiotics in the treatment of human inflammatory bowel diseases. J Clin Gastroenterol 45:S139–S144

    PubMed  Google Scholar 

  77. Tursi A, Brandimarte G, Giorgetti GM et al (2004) Low-dose balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-to-moderate ulcerative colitis. Med Sci Monit 10:1126–1131

    Google Scholar 

  78. Matthes H, Krummenerl T, Giensch M et al (2006) Treatment of mild to moderate acute attacks of distal ulcerative colitis with rectally-administered E. coli Nissle 1917: dose-dependent efficacy. Gastroenterology 130:A119

    Google Scholar 

  79. Resta-Lenert SC, Barrett KE (2009) Modulation of intestinal barrier properties by probiotics: role in reversing colitis. Ann NY Acad Sci 1165:175–182

    PubMed  Google Scholar 

  80. Segawa S, Fujiya M, Konishi H et al (2011) Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin–p38 MAPK pathway. PLoS ONE 6:e23278

    PubMed  CAS  Google Scholar 

  81. Hummel S, Veltman K, Cichon C, Sonnenborn U, Schmidta MA (2012) Differential targeting of the E-Cadherin/β-Catenin complex by gram-positive probiotic Lactobacilli improves epithelial barrier function. Appl Environ Microb 78:1140–1147

    CAS  Google Scholar 

  82. Galdeano CM, Núñez IN, LeBlanc AM et al (2011) Impact of a probiotic fermented milk in the gut ecosystem and in the systemic immunity using a non-severe protein-energy-malnutrition model in mice. BMC Gastroenterol 11:64

    Google Scholar 

  83. Angulo S, Morales A, Danese S et al (2011) Probiotic sonicates selectively induce mucosal immune cells apoptosis through ceramide generation via neutral sphingomyelinase. PLoS ONE 6:e16953

    PubMed  CAS  Google Scholar 

  84. Sturm A, Rilling K, Baumgart DC et al (2005) Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling. Infect Immun 73:1452–1465

    PubMed  CAS  Google Scholar 

  85. Petrof EO, Claud EC, Sun J et al (2009) Bacteria-free solution derived from Lactobacillus plantarum inhibits multiple NF-KappaB pathways and inhibits proteasome function. Inflamm Bowel Dis 15:1537–1547

    PubMed  Google Scholar 

  86. Yan F, Cao H, Cover TL et al (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132:562–575

    PubMed  CAS  Google Scholar 

  87. Swanson PA, Kumara A, Samarina S et al (2011) Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc Nat Acad Sci 108:8803–8808

    PubMed  CAS  Google Scholar 

  88. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Gene Dev 23:2333–2344

    PubMed  CAS  Google Scholar 

  89. Kawabata T, Otaka M, Itoh H et al (1994) Regulation of 60-kDa heat shock protein expression by systemic stress and 5-hydroxytryptamine in rat colonic mucosa. J Gastroenterol 29:721–726

    Google Scholar 

  90. Cappello F, Bellafiore M, David S, Anzalone R, Zummo G (2003) Ten kilodalton heat shock protein (HSP10) is overexpressed during carcinogenesis of large bowel and uterine exocervix. Cancer Lett 196:35–41

    PubMed  CAS  Google Scholar 

  91. Cappello F, David S, Rappa F et al (2005) The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase. BMC Cancer 5:139

    PubMed  Google Scholar 

  92. Mori D, Nakafusa Y, Miyazaki K, Tokunaga O (2005) Differential expression of Janus Kinase 3 (jak3), matrix metalloproteinase 13 (MMP13), heat shock protein 60 (HSP60), and mouse double minute 2(MDM2) in human colorectal cancer progression using human cancer cDNA microarrays. Pathol Res Pract 201:777–789

    PubMed  CAS  Google Scholar 

  93. He Y, Wu Y, Mou Z et al (2007) Proteomics-based identification of HSP60 as a tumor-associated antigen in colorectal cancer. Proteomics Clin Appl 1:336–342

    PubMed  CAS  Google Scholar 

  94. Peetermans WE, D’Haens GR, Ceuppens JL, Rutgeerts P, Geboes K (1995) Mucosal expression by B7-positive cells of the 60-kilodalton heat-shock protein in inflammatory bowel disease. Gastroenterology 108:75–82

    PubMed  CAS  Google Scholar 

  95. Elsaghier A, Prantera C, Bothamley G et al (1992) Disease association of antibodies to human and mycobacterial HSP70 and HSP60 stress proteins. Clin Exp Immunol 89:305–309

    PubMed  CAS  Google Scholar 

  96. Puga Yung GL, Fidler M, Albani E et al (2009) Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn’ disease. PLoS ONE 4:e7714

    PubMed  Google Scholar 

  97. Ohashi K, Burkart V, Flohé S et al (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    PubMed  CAS  Google Scholar 

  98. Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168:569–576

    PubMed  CAS  Google Scholar 

  99. Wang Y, Chen L, Hagiwara N, Knowlton AA (2010) Regulation of heat shock protein 60 and 72 expression in the failing heart. J Mol Cell Cardiol 4:360–366

    Google Scholar 

  100. Malago JJ, Nemeth E, Koninkx JF et al (2010) Microbial products from probiotic bacteria inhibit Salmonella enteritidis 857-induced IL-8 synthesis in Caco-2 cells. Folia Microbiol (Praha) 55:401–408

    CAS  Google Scholar 

  101. Tao Y, Drabik KA, Waypa TS et al (2006) Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol Cell Physiol 290:C1018–C1030

    PubMed  CAS  Google Scholar 

  102. Wieten L, van der Zee R, Spiering R et al (2010) A novel heat-shock protein coinducer boosts stress protein HSP70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthr Rheum 62:1026–1035

    CAS  Google Scholar 

  103. Conroy SE, Faulds GB, Williams W, Latchman DS, Isenberg DA (1994) Detection of autoantibodies to the 90 kDa heat shock protein in systemic lupus erythematosus and other autoimmune diseases. Brit J Rheumatol 33:923–926

    CAS  Google Scholar 

  104. Xiao J, Li S, Wang W, Li Y, Zhao W (2007) Protective effects of overexpression TCR Vbeta5.2-HSP70 and TCR Vbeta8.2-HSP70 against collagen-induced arthritis in rats. Cell Mol Immunol 4:439–445

    PubMed  CAS  Google Scholar 

  105. Yun TJ, Harning EK, Giza K et al (2011) EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity. J Immunol 186:563–575

    PubMed  CAS  Google Scholar 

  106. Shingai R, Maeda T, Onishi S, Yamamoto Y (1995) Autoantibody against 70 kD heat shock protein in patients with autoimmune liver diseases. J Hepatol 23:382–390

    PubMed  CAS  Google Scholar 

  107. Broadley SA, Vanags D, Williams B et al (2009) Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. Mult Scler 15:329–336

    PubMed  CAS  Google Scholar 

  108. Williams B, Vanags D, Hall S et al (2008) Efficacy and safety of chaperonin 10 in patients with moderate to severe plaque psoriasis: evidence of utility beyond a single indication. Arch Dermatol 144:683–685

    PubMed  Google Scholar 

  109. Vanags D, Williams B, Johnson B et al (2006) Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368:855–863

    PubMed  CAS  Google Scholar 

  110. Rice JW, Veal JM, Fadden RP et al (2008) Small molecule inhibitors of HSP90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthr Rheum Dec 58:3765–3775

    CAS  Google Scholar 

  111. Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 12:1641–1657

    Google Scholar 

  112. Fasano A, Shea-Donohue T (2005) Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol 2:416–422

    PubMed  CAS  Google Scholar 

  113. Karimi O, Peña AS, van Bodegraven AA (2005) Probiotics (VSL#3) in arthralgia in patients with ulcerative colitis and Crohn’s disease: a pilot study. Drugs Today (Barc) 41:453–459

    CAS  Google Scholar 

  114. Cheifetz A, Itzkowitz S (2004) The diagnosis and treatment of pouchitis in inflammatory bowel disease. J Clin Gastroenterol 38:S44–S50

    PubMed  Google Scholar 

  115. Conway de Macario E, Macario AJL (2009) Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. Intl J Med Microbiol 299:99–108

    Google Scholar 

  116. Campanella C, Marino Gammazza A, Mularoni L et al (2009) A comparative analysis of the products of GRoEL-1 gene from Chlamydia trachomatis serovar D and the HSP60 var1 transcript from Homo sapiens suggests a possible autoimmune response. Intl J Immunogenetics 36:73–78

    CAS  Google Scholar 

  117. Evans PE, Pardi DS (2007) Extraintestinal manifestations of inflammatory bowel disease: focus on the musculoskeletal, dermatologic, and ocular manifestations. Med Gen Med 9:55

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by IEMEST (FC, AJLM) and was carried out under the umbrella of the agreement between IEMEST and IMET signed March 26, 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Bellavia.

Additional information

Maurizio Bellavia and Giovanni Tomasello contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellavia, M., Tomasello, G., Romeo, M. et al. Gut microbiota imbalance and chaperoning system malfunction are central to ulcerative colitis pathogenesis and can be counteracted with specifically designed probiotics: a working hypothesis. Med Microbiol Immunol 202, 393–406 (2013). https://doi.org/10.1007/s00430-013-0305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-013-0305-2

Keywords

Navigation