Skip to main content

Advertisement

Log in

Activation of hepatic natural killer cells and control of liver-adapted lymphoma in the murine model of cytomegalovirus infection

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Hematopoietic stem cell transplantation (HSCT) is a promising therapeutic option against hematopoietic malignancies. Infection with cytomegalovirus (CMV) and tumor relapse are complications that limit the success of HSCT. In theory, CMV infection can facilitate tumor relapse and growth by inhibiting “graft take” and reconstitution of the immune system or by inducing the secretion of tumor cell growth-promoting cytokines. Conversely, one can also envisage an anti-tumoral effect of CMV by cytopathic/oncolytic infection of tumor cells, by inducing the secretion of death ligands for tumor cell apoptosis, and by the activation of systemic innate and adaptive immunity. Here we will briefly review the current knowledge about tumor control in a murine model of CMV infection and liver-adapted B cell lymphoma, with a focus on a putative implication of CD49+NKG2D+ hepatic natural killer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Appelbaum FR (2001) Haematopoietic cell transplantation as immunotherapy. Nature 411:385–389

    Article  CAS  PubMed  Google Scholar 

  2. Appelbaum FR (2003) The current status of hematopoietic cell transplantation. Annu Rev Med 54:491–512

    Article  CAS  PubMed  Google Scholar 

  3. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ (2004) Graft-versus-leukemia reactions in allogeneic chimeras. Blood 103:767–776

    Article  CAS  PubMed  Google Scholar 

  4. Leung W, Iyengar R, Turner V, Lang P, Bader P, Conn P, Niethammer D, Handgretinger R (2004) Determinants of antileukemia effects of allogeneic NK cells. J Immunol 172:644–650

    Article  CAS  PubMed  Google Scholar 

  5. Ruggeri L, Mancusi A, Capanni M, Martelli MF, Velardi A (2005) Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr Opin Immunol 17:211–217

    Article  CAS  PubMed  Google Scholar 

  6. Hebart H, Einsele H (2004) Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol 65:432–436

    Article  CAS  PubMed  Google Scholar 

  7. Riddell SR (1995) Pathogenesis of cytomegalovirus pneumonia in immunocompromised hosts. Semin Respir Infect 10:199–208

    CAS  PubMed  Google Scholar 

  8. Childs B, Emanuel D (1993) Cytomegalovirus infection and compromise. Exp Hematol 21:198–200

    CAS  PubMed  Google Scholar 

  9. Simmons P, Kaushansky K, Torok-Storb B (1990) Mechanisms of cytomegalovirus-mediated myelosuppression: perturbation of stromal cell function versus direct infection of myeloid cells. Proc Natl Acad Sci USA 87:1386–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fujiwara H, Matsumoto T, Eizuru Y, Matsushita K, Ohtsubo H, Kukita T, Imaizumi R, Matsumoto M, Hidaka S, Arima N, Tei C (2000) Cytomegalovirus infection is not necessarily a poor prognostic factor in adult T-cell leukemia/lymphoma. J Med Virol 62:140–143

    Article  CAS  PubMed  Google Scholar 

  11. Fujiwara H, Eizuru Y, Matsumoto T, Kukita T, Imaizumi R, Kawada H, Ohtsubo H, Matsushita K, Arima N, Tei C (2001) The significance of cytomegalovirus infection over the clinical course of adult T-cell leukemia/lymphoma. Microbiol Immunol 45:97–100

    Article  CAS  PubMed  Google Scholar 

  12. Brune W, Wagner M, Messerle M (2006) Manipulating cytomegalovirus genomes by BAC mutagenesis: strategies and applications. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 63–90

    Google Scholar 

  13. Holtappels R, Munks WM, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 383–418

    Google Scholar 

  14. Shenk T (2006) Human cytomegalovirus genomics. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 49–62

    Google Scholar 

  15. Digel M, Sinzger C (2006) Determinants of endothelial cell tropism of human cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 445–464

    Google Scholar 

  16. Apperley JF, Dowding C, Hibbin J, Buiter J, Matutes E, Sissons PJ, Gordon M, Goldman JM (1989) The effect of cytomegalovirus on hemopoiesis: in vitro evidence for selective infection of marrow stromal cells. Exp Hematol 17:38–45

    CAS  PubMed  Google Scholar 

  17. Busch FW, Mutter W, Koszinowski UH, Reddehase MJ (1991) Rescue of myeloid lineage-committed preprogenitor cells from cytomegalovirus-infected bone marrow stroma. J Virol 65:981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mutter W, Reddehase MJ, Busch FW, Bühring HJ, Koszinowski UH (1988) Failure in generating hemopoietic stem cells is the primary cause of death from cytomegalovirus disease in the immunocompromised host. J Exp Med 167:1645–1658

    Article  CAS  PubMed  Google Scholar 

  19. Reddehase MJ (1991) Bone marrow dysfunction in irradiated, cytomegalovirus-infected mice. Transplant Proc 23:10–11

    CAS  PubMed  Google Scholar 

  20. Mayer A, Podlech J, Kurz S, Steffens HP, Maiberger S, Thalmeier K, Angele P, Dreher L, Reddehase MJ (1997) Bone marrow failure by cytomegalovirus is associated with an in vivo deficiency in the expression of essential stromal hemopoietin genes. J Virol 71:4589–4598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steffens HP, Podlech J, Kurz S, Angele P, Dreis D, Reddehase MJ (1998) Cytomegalovirus inhibits the engraftment of donor bone marrow cells by downregulation of hemopoietin gene expression in recipient stroma. J Virol 72:5006–5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reddehase MJ, Dreher-Stumpp L, Angele P, Balthesen M, Susa M (1992) Hematopoietic stem cell deficiency resulting from cytomegalovirus infection of bone marrow stroma. Ann Hematol 64:A125–A127

    Article  PubMed  Google Scholar 

  23. Mori T, Ando K, Tanaka K, Ikeda Y, Koga Y (1997) Fas-mediated apoptosis of the hematopoietic progenitor cells in mice infected with murine cytomegalovirus. Blood 89:3565–3573

    Article  CAS  PubMed  Google Scholar 

  24. Erlach KC, Podlech J, Rojan A, Reddehase MJ (2002) Tumor control in a model of bone marrow transplantation and acute liver-infiltrating B-cell lymphoma: an unpredicted novel function of cytomegalovirus. J Virol 76:2857–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Erlach KC, Böhm V, Seckert CK, Reddehase MJ, Podlech J (2006) Lymphoma cell apoptosis in the liver induced by distant murine cytomegalovirus infection. J Virol 80:4801–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghazal P, Messerle M, Osborn K, Angulo A (2003) An essential role of the enhancer for murine cytomegalovirus in vivo growth and pathogenesis. J Virol 77:3217–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ménard C, Wagner M, Ruzsics Z, Holak K, Brune W, Campbell AE, Koszinowski UH (2003) Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol 77:5557–5570

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cicin-Sain L, Ruzsics Z, Podlech J, Bubic I, Ménard C, Jonjic S, Reddehase MJ, Koszinowski UH (2008) Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an anti-apoptotic viral gene. J Virol 82:2056–2064

    Article  CAS  PubMed  Google Scholar 

  29. Cicin-Sain L, Podlech J, Messerle M, Reddehase MJ, Koszinowski UH (2005) Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492–9502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Orange JS, Biron CA (1996) Characterization of early IL-12, IFN-alphabeta, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol 156:4746–4756

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the help by Jürgen Olert (Institute for Pathology, Mainz) with the karyotype analysis and by Hans Anton Lehr (Institute for Pathology, Mainz) with the Gomori staining of liver tissue. We thank Christof K. Seckert from our institute for help with the isolation of non-parenchymal liver cells. This work was supported by the Deutsche Forschungsgemeinschaft, SFB 432, individual project A10 “Influence of cytomegalovirus infection on the risk of tumor relapse after bone marrow transplantation”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katja C. Erlach or Jürgen Podlech.

Additional information

There are inclusions in this text reproduced or recombined from previous articles published in the Journal of Virology (American Society for Microbiology), which are cited in the reference section.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlach, K.C., Böhm, V., Knabe, M. et al. Activation of hepatic natural killer cells and control of liver-adapted lymphoma in the murine model of cytomegalovirus infection. Med Microbiol Immunol 197, 167–178 (2008). https://doi.org/10.1007/s00430-008-0084-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-008-0084-3

Keywords

Navigation