Skip to main content
Log in

Three Camellia sinensis glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanidins

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Biochemical, transgenic, and genetic complementation data demonstrate that three glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanins in plant cells.

Abstract

Flavonoids are compounds in tea (Camellia sinensis) that confer the characteristic astringent taste of tea beverages; these compounds have numerous benefits for human health. In plant cells, flavonoids are synthesized in different locations within the cytoplasm and are then transported and finally stored in vacuoles. To date, the mechanism involved in the intracellular transport of flavonoids in tea has not been well elucidated. In this study, we report the functional characterization of three cDNAs encoding glutathione S-transferases (CsGSTs) of C. sinensis, namely, CsGSTa, CsGSTb, and CsGSTc. The expression profiles of CsGSTa and CsGSTb were positively correlated with the accumulation of flavonols, anthocyanins and proanthocyanins in tea tissues and cultivars. These three recombinant CsGSTs showed a high affinity for flavonols (kaempferol-3-O-glucoside and quercetin-3-O-glucoside) and anthocyanin (cyanidin-3-O-glucoside) in vitro but had no or weak affinity for epicatechin. In vivo, CsGSTa, CsGSTb and CsGSTc fully or partially restored the storage of anthocyanins and proanthocyanidins in transgenic tt19 mutants. Metabolic profiling revealed that the contents of anthocyanins, flavonols, and proanthocyanidins were increased in the transgenic petals of Nicotiana tabacum. Taken together, all data showed that CsGSTa, CsGSTb, and CsGSTc are associated with the storage of anthocyanins, flavonols, and proanthocyanins in C. sinensis cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2018YFD1000601), the Natural Science Foundation of China (31870677, 31870676, 31570694, 31470689), the Collegiate Natural Science Foundation of Anhui Province (03087060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Gao or Tao Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiang, H., Zhao, Y. et al. Three Camellia sinensis glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanidins. Planta 250, 1163–1175 (2019). https://doi.org/10.1007/s00425-019-03206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03206-2

Keywords

Navigation