Skip to main content
Log in

In planta production of a candidate vaccine against bovine papillomavirus type 1

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Bovine papillomavirus type 1 (BPV-1) is an economically important virus that induces tumourigenic pathologies in horses and cows. Given that the BPV-1 L1 major coat protein can self-assemble into highly immunogenic higher-order structures, we transiently expressed it in Nicotiana benthamiana as a prelude to producing a candidate vaccine. It was found that plant codon optimization of L1 gave higher levels of expression than its non-optimized counterpart. Following protein extraction, we obtained high yields (183 mg/kg fresh weight leaf tissue) of relatively pure L1, which had self-assembled into virus-like particles (VLPs). We found that these VLPs elicited a highly specific and strong immune response, and therefore they may have utility as a potential vaccine. This is the first report demonstrating the viable production of a candidate BPV vaccine protein in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BPV:

Bovine papillomavirus

CPMV:

Cowpea mosaic virus

CRPV:

Cottontail rabbit papillomavirus

ELISA:

Enzyme-linked immunosorbent assay

HPV:

Human papillomavirus

Mes:

2-Morpholinoethanesulphonic acid

PBS:

Phosphate-buffered saline

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

UTRs:

Untranslated regions

VLP:

Virus-like particle

References

  • Ashrafi GH, Tsirimonaki E, Marchetti B, O’Brien PM, Sibbet GJ, Andrew L, Campo MS (2002) Down-regulation of MHC class I by bovine papillomavirus E5 oncoproteins. Oncogene 21:248–259

    Article  PubMed  CAS  Google Scholar 

  • Biemelt S, Sonnewald U, Gaimbacher P, Willmitzer L, Muller M (2003) Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol 77:9211–9220

    Article  PubMed  CAS  Google Scholar 

  • Bogaert L, Martens A, Van Poucke M, Ducatelle R, De Cock H, Dewulf J, De Baere C, Peelman L, Gasthuys F (2008) High prevalence of bovine papillomaviral DNA in the normal skin of equine sarcoid-affected and healthy horses. Vet Microbiol 129:58–68

    Article  PubMed  CAS  Google Scholar 

  • Borzacchiello G, Roperto F (2008) Bovine papillomaviruses, papillomas and cancer in cattle. Vet Res 39:45

    Article  PubMed  Google Scholar 

  • Caciagli P, Piles VM, Marian D, Vecchiati M, Masenga V, Mason G, Falcioni T, Noris E (2009) Virion stability is important for the circulative transmission of tomato yellow leaf curl Sardinia virus by Bemisia tabaci, but virion access to salivary glands does not guarantee transmissibility. J Virol 83:5784–5795

    Article  PubMed  CAS  Google Scholar 

  • Campo M (1995) Infection by bovine papillomavirus and prospects for vaccination. Trends Microbiol 3:92–97

    Article  PubMed  CAS  Google Scholar 

  • Campo MS (2003) Vaccination against papillomavirus in cattle. Clin Dermatol 15:275–283

    Article  Google Scholar 

  • Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-San Millan A, Ortigosa SM, Hervas-Stubbs S, Corral-Martinez P, Segui-Simarro JM, Gaetan J, Coursaget P, Veramendi J (2008) Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J 6:427–441

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Vaquero-Martin C, Sack M, Drossard J, Emans N, Commandeur U (1999) Towards molecular farming in the future: transient protein expression in plants. Biotechnol Appl Bioch 30:113–116

    CAS  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Giorgi C, Franconi R, Rybicki EP (2010) Human papillomavirus vaccines in plants. Expert Rev Vaccines 8:913–924

    Article  Google Scholar 

  • Jarrett WFH, Oneil BW, Gaukroger JM, Laird HM, Smith KT, Campo MS (1990) Studies on vaccination against papillomaviruses: a comparison of purified virus, tumor extract and transformed-cells in prophylactic vaccination. Vet Rec 126:449–452

    PubMed  CAS  Google Scholar 

  • Jarrett WFH, Smith KT, Oneil BW, Gaukroger JM, Chandrachud LM, Grindlay GJ, Mcgarvie GM, Campo MS (1991) Studies on vaccination against papillomaviruses: prophylactic and therapeutic vaccination with recombinant structural proteins. Virology 184:33–42

    Article  PubMed  CAS  Google Scholar 

  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Nat Acad Sci USA 89:12180–12184

    Article  PubMed  CAS  Google Scholar 

  • Kohl T, Hitzeroth II, Stewart D, Varsani A, Govan VA, Christensen ND, Williamson AL, Rybicki EP (2006) Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study. Clin Vaccine Immunol 13:845–853

    Article  PubMed  CAS  Google Scholar 

  • Kohl TO, Hitzeroth II, Christensen ND, Rybicki EP (2007) Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol 7:56

    Article  PubMed  Google Scholar 

  • Kurg R, Uusen P, Sepp T, Sepp M, Abroi A, Ustav M (2009) Bovine papillomavirus type 1 E2 protein heterodimer is functional in papillomavirus DNA replication in vivo. Virology 386:353–359

    Article  PubMed  CAS  Google Scholar 

  • Layne E (1957) Spectrophotometric and turbidimetric methods for measuring proteins. Method Enzymol 3:447–454

    Article  Google Scholar 

  • Lenzi P, Scotti N, Alagna F, Tornesello ML, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro FM, Maliga P, Cardi T (2008) Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res 17:1091–1102

    Article  PubMed  CAS  Google Scholar 

  • Lindbo JA (2007) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145:1232–1240

    Article  PubMed  CAS  Google Scholar 

  • Liu XF, Schuck S, Stenlund A (2010) Structure-based mutational analysis of the bovine papillomavirus E1 helicase domain identifies residues involved in the nonspecific DNA binding activity required for double trimer formation. J Virol 84:4264–4276

    Article  PubMed  CAS  Google Scholar 

  • Luisoni E, Milne RG, Vecchiati M (1995) Purification of tomato yellow leaf curl geminivirus. New Microbiol 18:253–260

    PubMed  CAS  Google Scholar 

  • Ma JKC, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines: current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599

    Article  PubMed  CAS  Google Scholar 

  • Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, Fischer R, Williamson AL, Rybicki EP (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 88:1460–1469

    Article  PubMed  CAS  Google Scholar 

  • Matic S, Rinaldi R, Masenga V, Noris E (2011) Efficient production of chimeric Human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol 11:106

    Article  PubMed  CAS  Google Scholar 

  • Matic S, Masenga V, Poli A, Rinaldi R, Milne RG, Vecchiati M, Noris E (2012) Comparative analysis of recombinant Human Papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol J 10:410–421

    Article  PubMed  CAS  Google Scholar 

  • Mohr IJ, Clark R, Sun S, Androphy EJ, Macpherson P, Botchan MR (1990) Targeting the E1 replication protein to the papillomavirus origin of replication by complex-formation with the E2 transactivator. Science 250:1694–1699

    Article  PubMed  CAS  Google Scholar 

  • Nasir L, Campo MS (2008) Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet Dermatol 19:243–254

    Article  PubMed  Google Scholar 

  • Paintsil J, Muller M, Picken M, Gissmann L, Zhou JA (1998) Calcium is required in reassembly of bovine papillomavirus in vitro. J Gen Virol 79:1133–1141

    PubMed  CAS  Google Scholar 

  • Penney CA, Thomas DR, Deen SS, Walmsley AM (2011) Plant-made vaccines in support of the millennium development goals. Plant Cell Rep 30:789–798

    Article  PubMed  CAS  Google Scholar 

  • Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8:620–637

    Article  PubMed  CAS  Google Scholar 

  • Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    Article  PubMed  CAS  Google Scholar 

  • Shafti-Keramat S, Schellenbacher C, Handisurya A, Christensen N, Reininger B, Brandt S, Kirnbauer R (2009) Bovine papillomavirus type 1 (BPV1) and BPV2 are closely related serotypes. Virology 393:1–6

    Article  PubMed  CAS  Google Scholar 

  • Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta 1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485

    Article  PubMed  CAS  Google Scholar 

  • Thones N, Muller M (2007) Oral immunization with different assembly forms of the HPV 16 major capsid protein L1 induces neutralizing antibodies and cytotoxic T-lymphocytes. Virology 369:375–388

    Article  PubMed  Google Scholar 

  • Tong X, Salgia R, Li JL, Griffin JD, Howley PM (1997) The bovine papillomavirus E6 protein binds to the LD motif repeats of paxillin and blocks its interaction with vinculin and the focal adhesion kinase. J Biol Chem 272:33373–33376

    Article  PubMed  CAS  Google Scholar 

  • Varsani A, Williamson AL, Rose RC, Jaffer M, Rybicki EP (2003) Expression of human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Arch Virol 148:1771–1786

    Article  PubMed  CAS  Google Scholar 

  • Waheed MT, Thones N, Muller M, Hassan SW, Razavi NM, Lossl E, Kaul HP, Lossl AG (2011) Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Res 20:271–282

    Article  PubMed  CAS  Google Scholar 

  • Wolf M, Garcea RL, Grigorieff N, Harrison SC (2010) Subunit interactions in bovine papillomavirus. Proc Nat Acad Sci USA 107:6298–6303

    Article  PubMed  CAS  Google Scholar 

  • Zago M, Campo MS, O’Brien V (2004) Cyclin A expression and growth in suspension can be uncoupled from p27 deregulation and extracellular signal-regulated kinase activity in cells transformed by bovine papillomavirus type 4 E5. J Gen Virol 85:3585–3595

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Modis Y, High K, Towne V, Meng Y, Wang Y, Alexandroff J, Brown M, Carragher B, Potter CS, Abraham D, Wohlpart D, Kosinski M, Washabaugh MW, Sitrin RD (2012) Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virol J 9:52

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Koh CH, Degenkolbe R, O’Connor MJ, Muller A, Steger G, Chen JJ, Lui Y, Androphy E, Bernard HU (2000) Interaction with CBP/p300 enables the bovine papillomavirus type 1 E6 oncoprotein to downregulate CBP/p300-mediated transactivation by p53. J Gen Virol 81:2617–2623

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Lesley Torrance and Graham Cowan (The James Hutton Institute, Invergowrie, Scotland, UK) for helpful and critical discussions. We would also like to thank Profs. Lubna Nasir and Saveria Campo (Glasgow University, Glasgow, Scotland, UK) for provision of the BPV-1 clone. We are very grateful to Prof. Reinhard Kirnbauer and Dr. Sabine Brandt (University of Vienna Medical School, Vienna, Austria) for the provision of insect cell-produced BPV L1 VLPs. This was funded by the EU PLAPROVA KBBE-2008-227056 grant, and the work of AJL, SNC and MT was also partly funded by the Scottish Government’s Rural and Environmental Science and Analytical Services (RESAS) Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Love.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, A.J., Chapman, S.N., Matic, S. et al. In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta 236, 1305–1313 (2012). https://doi.org/10.1007/s00425-012-1692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1692-0

Keywords

Navigation