Skip to main content

Advertisement

Log in

Cardiovascular determinants of life span

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The prevalence of cardiovascular diseases rises with aging and is one of the main causes of mortality in western countries. In view of the progressively aging population, there is an urge for a better understanding of age-associated cardiovascular diseases and its underlying molecular mechanisms. The risk factors for cardiovascular diseases include unhealthy diet, diabetes, obesity, smoking, alcohol consumption, physical inactivity, and aging. Increased production of oxygen-derived free radicals plays an important role in mediating cardiovascular diseases. Oxidative stress affects the availability and/or balance of key-regulators of vascular homeostasis and favors the development of cardiovascular diseases. Reactive oxygen species are generated by different intracellular molecular pathways principally located in the cytoplasm and in the mitochondria. The mitochondrial protein p66Shc and the deacetylase enzyme SIRT1 were shown to be involved in different aspects of cardiovascular diseases. This review focuses on the latest scientific advances in understanding cardiovascular diseases associated to aging, as well as delineating the possible therapeutic implications of p66Shc and SIRT 1 in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abete P, Ferrara N, Cacciatore F, Sagnelli E, Manzi M, Carnovale V, Calabrese C, de Santis D, Testa G, Longobardi G, Napoli C, Rengo F (2001) High level of physical activity preserves the cardioprotective effect of preinfarction angina in elderly patients. J Am Coll Cardiol 38:1357–1365. doi:Electronic Resource Number (111)

    CAS  PubMed  Google Scholar 

  2. Adler A, Messina E, Sherman B, Wang Z, Huang H, Linke A, Hintze TH (2003) NAD(P)H oxidase-generated superoxide anion accounts for reduced control of myocardial O2 consumption by NO in old Fischer 344 rats. Am J Physiol Heart Circ Physiol 285:H1015–H1022. doi:Electronic Resource Number (44)

    CAS  PubMed  Google Scholar 

  3. Aikawa M, Sugiyama S, Hill CC, Voglic SJ, Rabkin E, Fukumoto Y, Schoen FJ, Witztum JL, Libby P (2002) Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation 106:1390–1396. doi:Electronic Resource Number (53)

    CAS  PubMed  Google Scholar 

  4. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100:1512–1521. doi:Electronic Resource Number (106)

    CAS  PubMed  Google Scholar 

  5. Baker CS, Hall RJ, Evans TJ, Pomerance A, Maclouf J, Creminon C, Yacoub MH, Polak JM (1999) Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 19:646–655. doi:Electronic Resource Number (49)

    CAS  PubMed  Google Scholar 

  6. Ballard VL, Edelberg JM (2007) Stem cells and the regeneration of the aging cardiovascular system. Circ Res 100:1116–1127. doi:Electronic Resource Number (2)

    CAS  PubMed  Google Scholar 

  7. Barton M, Haudenschild CC, d'Uscio LV, Shaw S, Munter K, Luscher TF (1998) Endothelin ETA receptor blockade restores NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 95:14367–14372. doi:Electronic Resource Number (13)

    CAS  PubMed  Google Scholar 

  8. Bath PM (1993) The effect of nitric oxide-donating vasodilators on monocyte chemotaxis and intracellular cGMP concentrations in vitro. Eur J Clin Pharmacol 45:53–58. doi:Electronic Resource Number (7)

    CAS  PubMed  Google Scholar 

  9. Berniakovich I, Trinei M, Stendardo M, Migliaccio E, Minucci S, Bernardi P, Pelicci PG, Giorgio M (2008) p66Shc-generated oxidative signal promotes fat accumulation. J Biol Chem 283:34283–34293. doi:Electronic Resource Number (83)

    CAS  PubMed  Google Scholar 

  10. Black MA, Green DJ, Cable NT (2008) Exercise prevents age-related decline in nitric-oxide-mediated vasodilator function in cutaneous microvessels. J Physiol 586:3511–3524. doi:Electronic Resource Number (116)

    CAS  PubMed  Google Scholar 

  11. Blumenthal JA, Sherwood A, Babyak MA, Watkins LL, Waugh R, Georgiades A, Bacon SL, Hayano J, Coleman RE, Hinderliter A (2005) Effects of exercise and stress management training on markers of cardiovascular risk in patients with ischemic heart disease: a randomized controlled trial. JAMA 293:1626–1634. doi:Electronic Resource Number (114)

    CAS  PubMed  Google Scholar 

  12. Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci PG (1996) Not all Shc's roads lead to Ras. Trends Biochem Sci 21:257–261. doi:Electronic Resource Number (75)

    CAS  PubMed  Google Scholar 

  13. Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4:e31. doi:Electronic Resource Number (99)

    PubMed  Google Scholar 

  14. Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897. doi:Electronic Resource Number (27)

    CAS  PubMed  Google Scholar 

  15. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015. doi:Electronic Resource Number (91)

    CAS  PubMed  Google Scholar 

  16. Cacciapuoti F, Marfella R, Paolisso G (2009) Is the aging heart similar to the diabetic heart? Evaluation of LV function of the aging heart with Tissue Doppler Imaging. Aging Clin Exp Res 21:22–26. doi:Electronic Resource Number (37)

    PubMed  Google Scholar 

  17. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844. doi:Electronic Resource Number (33)

    CAS  PubMed  Google Scholar 

  18. Camici GG, Cosentino F, Tanner FC, Luscher TF (2008) The role of p66Shc deletion in age-associated arterial dysfunction and disease states. J Appl Physiol 105:1628–1631. doi:Electronic Resource Number (79)

    CAS  PubMed  Google Scholar 

  19. Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P, Luscher TF, Cosentino F (2007) Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci U S A 104:5217–5222. doi:Electronic Resource Number (58)

    CAS  PubMed  Google Scholar 

  20. Cesselli D, Jakoniuk I, Barlucchi L, Beltrami AP, Hintze TH, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2001) Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 89:279–286. doi:Electronic Resource Number (1)

    CAS  PubMed  Google Scholar 

  21. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392. doi:Electronic Resource Number (95)

    CAS  PubMed  Google Scholar 

  22. Collins T, Cybulsky MI (2001) NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107:255–264. doi:Electronic Resource Number (57)

    CAS  PubMed  Google Scholar 

  23. Cosentino F, Francia P, Camici GG, Pelicci PG, Luscher TF (2007) Final common molecular pathways of aging and cardiovascular disease. Role of the p66Shc Protein. Arterioscler Thromb Vasc Biol Resource Number (78)

  24. Cosentino F, Francia P, Camici GG, Pelicci PG, Luscher TF, Volpe M (2008) Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 28:622–628. doi:Electronic Resource Number (32)

    CAS  PubMed  Google Scholar 

  25. Csiszar A, Smith K, Labinskyy N, Orosz Z, Rivera A, Ungvari Z (2006) Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: role of NF-kappaB inhibition. Am J Physiol Heart Circ Physiol 291:H1694–H1699. doi:Electronic Resource Number (121)

    CAS  PubMed  Google Scholar 

  26. Csiszar A, Ungvari Z, Edwards JG, Kaminski P, Wolin MS, Koller A, Kaley G (2002) Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 90:1159–1166. doi:Electronic Resource Number (16)

    CAS  PubMed  Google Scholar 

  27. Csiszar A, Wang M, Lakatta EG, Ungvari Z (2008) Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol 105:1333–1341. doi:Electronic Resource Number (24)

    CAS  PubMed  Google Scholar 

  28. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A 87:5134–5138. doi:Electronic Resource Number (30)

    CAS  PubMed  Google Scholar 

  29. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107:1255–1262. doi:Electronic Resource Number (26)

    CAS  PubMed  Google Scholar 

  30. de Belder A, Radomski M, Hancock V, Brown A, Moncada S, Martin J (1995) Megakaryocytes from patients with coronary atherosclerosis express the inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 15:637–641. doi:Electronic Resource Number (4)

    PubMed  Google Scholar 

  31. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974. doi:Electronic Resource Number (35)

    PubMed  Google Scholar 

  32. Di Stefano V, Cencioni C, Zaccagnini G, Magenta A, Capogrossi MC, Martelli F (2009) p66ShcA modulates oxidative stress and survival of endothelial progenitor cells in response to high glucose. Cardiovasc Res 82(3):421–429

    PubMed  Google Scholar 

  33. Fernandez-Patron C, Radomski MW, Davidge ST (2000) Role of matrix metalloproteinase-2 in thrombin-induced vasorelaxation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol 278:H1473–H1479. doi:Electronic Resource Number (6)

    CAS  PubMed  Google Scholar 

  34. Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, Rengo G, Rossi F, Filippelli A (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11:139–150. doi:Electronic Resource Number (110)

    CAS  PubMed  Google Scholar 

  35. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress, and the biology of ageing. Nature 408:239–247. doi:Electronic Resource Number (42)

    CAS  PubMed  Google Scholar 

  36. Fleming I, Mohamed A, Galle J, Turchanowa L, Brandes RP, Fisslthaler B, Busse R (2005) Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCalpha. Cardiovasc Res 65:897–906. doi:Electronic Resource Number (54)

    CAS  PubMed  Google Scholar 

  37. Francia P, delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E, Pelicci PG, Schiavoni M, Luscher TF, Volpe M, Cosentino F (2004) Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 110:2889–2895. doi:Electronic Resource Number (84)

    CAS  PubMed  Google Scholar 

  38. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376. doi:Electronic Resource Number (5)

    CAS  PubMed  Google Scholar 

  39. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281. doi:Electronic Resource Number (29)

    CAS  PubMed  Google Scholar 

  40. Haberland ME, Fong D, Cheng L (1988) Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241:215–218. doi:Electronic Resource Number (51)

    CAS  PubMed  Google Scholar 

  41. Halliwell B (1996) Free radicals, proteins, and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027. doi:Electronic Resource Number (41)

    CAS  PubMed  Google Scholar 

  42. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300. doi:Electronic Resource Number (38)

    CAS  PubMed  Google Scholar 

  43. Heymes C, Habib A, Yang D, Mathieu E, Marotte F, Samuel J, Boulanger CM (2000) Cyclo-oxygenase-1 and -2 contribution to endothelial dysfunction in ageing. Br J Pharmacol 131:804–810. doi:Electronic Resource Number (15)

    CAS  PubMed  Google Scholar 

  44. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196. doi:Electronic Resource Number (117)

    CAS  PubMed  Google Scholar 

  45. Karasu C (1999) Increased activity of H2O2 in aorta isolated from chronically streptozotocin-diabetic rats: effects of antioxidant enzymes and enzymes inhibitors. Free Radic Biol Med 27:16–27. doi:Electronic Resource Number (69)

    CAS  PubMed  Google Scholar 

  46. Keegan A, Walbank H, Cotter MA, Cameron NE (1995) Chronic vitamin E treatment prevents defective endothelium-dependent relaxation in diabetic rat aorta. Diabetologia 38:1475–1478. doi:Electronic Resource Number (68)

    CAS  PubMed  Google Scholar 

  47. Khan BV, Parthasarathy SS, Alexander RW, Medford RM (1995) Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest 95:1262–1270. doi:Electronic Resource Number (31)

    CAS  PubMed  Google Scholar 

  48. Kitayama J, Yi C, Faraci FM, Heistad DD (2006) Modulation of dilator responses of cerebral arterioles by extracellular superoxide dismutase. Stroke 37:2802–2806. doi:Electronic Resource Number (45)

    PubMed  Google Scholar 

  49. Knutson MD, Leeuwenburgh C (2008) Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases. Nutr Rev 66:591–596. doi:Electronic Resource Number (118)

    PubMed  Google Scholar 

  50. Kume N, Cybulsky MI, Gimbrone MA Jr (1992) Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human, and rabbit arterial endothelial cells. J Clin Invest 90:1138–1144. doi:Electronic Resource Number (25)

    CAS  PubMed  Google Scholar 

  51. Le S, Connors TJ, Maroney AC (2001) c-Jun N-terminal kinase specifically phosphorylates p66ShcA at serine 36 in response to ultraviolet irradiation. J Biol Chem 276:48332–48336. doi:Electronic Resource Number (76)

    CAS  PubMed  Google Scholar 

  52. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P (1993) An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 13:197–204. doi:Electronic Resource Number (28)

    PubMed  Google Scholar 

  53. Liu S, Lee IM, Song Y, Van Denburgh M, Cook NR, Manson JE, Buring JE (2006) Vitamin E and risk of type 2 diabetes in the women's health study randomized controlled trial. Diabetes 55:2856–2862. doi:Electronic Resource Number (107)

    CAS  PubMed  Google Scholar 

  54. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148. doi:Electronic Resource Number (89)

    CAS  PubMed  Google Scholar 

  55. Luscher TF, Tanner FC, Dohi Y (1992) Age, hypertension and hypercholesterolaemia alter endothelium-dependent vascular regulation. Pharmacol Toxicol 70:S32–S39. doi:Electronic Resource Number (34)

    CAS  PubMed  Google Scholar 

  56. Luscher TF, Yang ZH, Diederich D, Buhler FR (1989) Endothelium-derived vasoactive substances: potential role in hypertension, atherosclerosis, and vascular occlusion. J Cardiovasc Pharmacol 14(Suppl 6):S63–S69. doi:Electronic Resource Number (9)

    PubMed  Google Scholar 

  57. MacMillan-Crow LA, Crow JP, Thompson JA (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–1622. doi:Electronic Resource Number (21)

    CAS  PubMed  Google Scholar 

  58. Macmillan-Crow LA, Cruthirds DL (2001) Invited review: manganese superoxide dismutase in disease. Free Radic Res 34:325–336. doi:Electronic Resource Number (20)

    CAS  PubMed  Google Scholar 

  59. Makimattila S, Virkamaki A, Groop PH, Cockcroft J, Utriainen T, Fagerudd J, Yki-Jarvinen H (1996) Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation 94:1276–1282. doi:Electronic Resource Number (10)

    CAS  PubMed  Google Scholar 

  60. Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K (2007) Imbalance between endothelium-derived relaxing and contracting factors in mesenteric arteries from aged OLETF rats, a model of Type 2 diabetes. Am J Physiol Heart Circ Physiol 293:H1480–H1490. doi:Electronic Resource Number (62)

    CAS  PubMed  Google Scholar 

  61. Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K (2008) Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol 295:H1165–H1176. doi:Electronic Resource Number (63)

    CAS  PubMed  Google Scholar 

  62. Matsumoto T, Yoshiyama S, Wakabayashi K, Kobayashi T, Kamata K (2004) Effects of chronic insulin on endothelial dysfunction of basilar arteries from established streptozotocin-diabetic rats. Eur J Pharmacol 504:119–127. doi:Electronic Resource Number (60)

    CAS  PubMed  Google Scholar 

  63. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104:14855–14860. doi:Electronic Resource Number (103)

    CAS  PubMed  Google Scholar 

  64. Menini S, Amadio L, Oddi G, Ricci C, Pesce C, Pugliese F, Giorgio M, Migliaccio E, Pelicci P, Iacobini C, Pugliese G (2006) Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes 55:1642–1650. doi:Electronic Resource Number (86)

    CAS  PubMed  Google Scholar 

  65. Menini S, Iacobini C, Ricci C, Oddi G, Pesce C, Pugliese F, Block K, Abboud HE, Giorgio M, Migliaccio E, Pelicci PG, Pugliese G (2007) Ablation of the gene encoding p66Shc protects mice against AGE-induced glomerulopathy by preventing oxidant-dependent tissue injury and further AGE accumulation. Diabetologia 50:1997–2007. doi:Electronic Resource Number (87)

    CAS  PubMed  Google Scholar 

  66. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313. doi:Electronic Resource Number (74)

    CAS  PubMed  Google Scholar 

  67. Migliaccio E, Mele S, Salcini AE, Pelicci G, Lai KM, Superti-Furga G, Pawson T, Di Fiore PP, Lanfrancone L, Pelicci PG (1997) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. Embo J 16:706–716. doi:Electronic Resource Number (82)

    CAS  PubMed  Google Scholar 

  68. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716. doi:Electronic Resource Number (102)

    CAS  PubMed  Google Scholar 

  69. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142. doi:Electronic Resource Number (8)

    CAS  PubMed  Google Scholar 

  70. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S (2005) Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2:105–117. doi:Electronic Resource Number (100)

    CAS  PubMed  Google Scholar 

  71. Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 100:2112–2116. doi:Electronic Resource Number (85)

    CAS  PubMed  Google Scholar 

  72. Nemoto S, Combs CA, French S, Ahn BH, Fergusson MM, Balaban RS, Finkel T (2006) The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. J Biol Chem 281:10555–10560. doi:Electronic Resource Number (77)

    CAS  PubMed  Google Scholar 

  73. Nemoto S, Fergusson MM, Finkel T (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306:2105–2108. doi:Electronic Resource Number (90)

    CAS  PubMed  Google Scholar 

  74. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317. doi:Electronic Resource Number (98)

    CAS  PubMed  Google Scholar 

  75. Nohl H, Kramer R (1980) Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech Ageing Dev 14:137–144. doi:Electronic Resource Number (39)

    CAS  PubMed  Google Scholar 

  76. Orimo M, Minamino T, Miyauchi H, Tateno K, Okada S, Moriya J, Komuro I (2009) Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol 29:889–894. doi:Electronic Resource Number (101)

    CAS  PubMed  Google Scholar 

  77. Ota H, Eto M, Kano MR, Ogawa S, Iijima K, Akishita M, Ouchi Y (2008) Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol 28:1634–1639. doi:Electronic Resource Number (105)

    CAS  PubMed  Google Scholar 

  78. Pagnin E, Fadini G, de Toni R, Tiengo A, Calo L, Avogaro A (2005) Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J Clin Endocrinol Metab 90:1130–1136. doi:Electronic Resource Number (81)

    CAS  PubMed  Google Scholar 

  79. Pandolfi S, Bonafe M, Di Tella L, Tiberi L, Salvioli S, Monti D, Sorbi S, Franceschi C (2005) p66(shc) is highly expressed in fibroblasts from centenarians. Mech Ageing Dev 126:839–844. doi:Electronic Resource Number (80)

    CAS  PubMed  Google Scholar 

  80. Pendurthi UR, Williams JT, Rao LV (1999) Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells: a possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol 19:419–426. doi:Electronic Resource Number (119)

    CAS  PubMed  Google Scholar 

  81. Radak Z, Naito H, Kaneko T, Tahara S, Nakamoto H, Takahashi R, Cardozo-Pelaez F, Goto S (2002) Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Arch 445:273–278. doi:Electronic Resource Number (112)

    CAS  PubMed  Google Scholar 

  82. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487. doi:Electronic Resource Number (19)

    CAS  PubMed  Google Scholar 

  83. Raij L (1991) Hypertension, endothelium, and cardiovascular risk factors. Am J Med 90:13S–18S. doi:Electronic Resource Number (11)

    CAS  PubMed  Google Scholar 

  84. Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 85:6465–6467. doi:Electronic Resource Number (40)

    CAS  PubMed  Google Scholar 

  85. Rinaldi B, Corbi G, Boccuti S, Filippelli W, Rengo G, Leosco D, Rossi F, Filippelli A, Ferrara N (2006) Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart. Exp Gerontol 41:764–770. doi:Electronic Resource Number (115)

    CAS  PubMed  Google Scholar 

  86. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118. doi:Electronic Resource Number (96)

    CAS  PubMed  Google Scholar 

  87. Rodriguez-Manas L, Angulo J, Vallejo S, Peiro C, Sanchez-Ferrer A, Cercas E, Lopez-Doriga P, Sanchez-Ferrer CF (2003) Early and intermediate Amadori glycosylation adducts, oxidative stress, and endothelial dysfunction in the streptozotocin-induced diabetic rats vasculature. Diabetologia 46:556–566. doi:Electronic Resource Number (70)

    CAS  PubMed  Google Scholar 

  88. Romero MJ, Platt DH, Tawfik HE, Labazi M, El-Remessy AB, Bartoli M, Caldwell RB, Caldwell RW (2008) Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res 102:95–102. doi:Electronic Resource Number (71)

    CAS  PubMed  Google Scholar 

  89. Ryoo S, Lemmon CA, Soucy KG, Gupta G, White AR, Nyhan D, Shoukas A, Romer LH, Berkowitz DE (2006) Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling. Circ Res 99:951–960. doi:Electronic Resource Number (55)

    CAS  PubMed  Google Scholar 

  90. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson JE, Glynn RJ, Gaziano JM (2008) Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. JAMA 300:2123–2133. doi:Electronic Resource Number (109)

    CAS  PubMed  Google Scholar 

  91. Shi Y, Feletou M, Ku DD, Man RY, Vanhoutte PM (2007) The calcium ionophore A23187 induces endothelium-dependent contractions in femoral arteries from rats with streptozotocin-induced diabetes. Br J Pharmacol 150:624–632. doi:Electronic Resource Number (14)

    CAS  PubMed  Google Scholar 

  92. Shi Y, Man RY, Vanhoutte PM (2008) Two isoforms of cyclooxygenase contribute to augmented endothelium-dependent contractions in femoral arteries of 1-year-old rats. Acta Pharmacol Sin 29:185–192. doi:Electronic Resource Number (17)

    CAS  PubMed  Google Scholar 

  93. Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042. doi:Electronic Resource Number (97)

    CAS  PubMed  Google Scholar 

  94. Sniderman AD, Furberg CD (2008) Age as a modifiable risk factor for cardiovascular disease. Lancet 371:1547–1549. doi:Electronic Resource Number (36)

    PubMed  Google Scholar 

  95. Spitaler MM, Graier WF (2002) Vascular targets of redox signalling in diabetes mellitus. Diabetologia 45:476–494. doi:Electronic Resource Number (67)

    CAS  PubMed  Google Scholar 

  96. Su J, Lucchesi PA, Gonzalez-Villalobos RA, Palen DI, Rezk BM, Suzuki Y, Boulares HA, Matrougui K (2008) Role of advanced glycation end products with oxidative stress in resistance artery dysfunction in type 2 diabetic mice. Arterioscler Thromb Vasc Biol 28:1432–1438. doi:Electronic Resource Number (59)

    CAS  PubMed  Google Scholar 

  97. Szabo C, Salzman AL (1995) Endogenous peroxynitrite is involved in the inhibition of mitochondrial respiration in immuno-stimulated J774.2 macrophages. Biochem Biophys Res Commun 209:739–743. doi:Electronic Resource Number (22)

    CAS  PubMed  Google Scholar 

  98. Szabo C, Zingarelli B, O'Connor M, Salzman AL (1996) DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci U S A 93:1753–1758. doi:Electronic Resource Number (18)

    CAS  PubMed  Google Scholar 

  99. Taniguchi N, Takahashi M, Sakiyama H, Park YS, Asahi M, Misonou Y, Miyamoto Y (2005) A common pathway for intracellular reactive oxygen species production by glycoxidative and nitroxidative stress in vascular endothelial cells and smooth muscle cells. Ann N Y Acad Sci 1043:521–528. doi:Electronic Resource Number (72)

    CAS  PubMed  Google Scholar 

  100. Tanner FC, Boulanger CM, Luscher TF (1993) Endothelium-derived nitric oxide, endothelin, and platelet vessel wall interaction: alterations in hypercholesterolemia and atherosclerosis. Semin Thromb Hemost 19:167–175. doi:Electronic Resource Number (50)

    CAS  PubMed  Google Scholar 

  101. Tanner FC, Noll G, Boulanger CM, Luscher TF (1991) Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium-derived nitric oxide. Circulation 83:2012–2020. doi:Electronic Resource Number (56)

    CAS  PubMed  Google Scholar 

  102. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, Skidmore B, Stone JA, Thompson DR, Oldridge N (2004) Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med 116:682–692. doi:Electronic Resource Number (113)

    PubMed  Google Scholar 

  103. Tesfamariam B, Brown ML, Deykin D, Cohen RA (1990) Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest 85:929–932. doi:Electronic Resource Number (64)

    CAS  PubMed  Google Scholar 

  104. van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279:28873–28879. doi:Electronic Resource Number (92)

    PubMed  Google Scholar 

  105. van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Luscher TF (2000) Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 192:1731–1744. doi:Electronic Resource Number (43)

    PubMed  Google Scholar 

  106. Van der Vliet A, Smith D, O'Neill CA, Kaur H, Darley-Usmar V, Cross CE, Halliwell B (1994) Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J 303(Pt 1):295–301. doi:Electronic Resource Number (23)

    PubMed  Google Scholar 

  107. Vanhoutte PM (2009) Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J 73:595–601. doi:Electronic Resource Number (4)

    CAS  PubMed  Google Scholar 

  108. Vanhoutte PM, Tang EH (2008) Endothelium-dependent contractions: when a good guy turns bad! J Physiol 586:5295–5304. doi:Electronic Resource Number (12)

    CAS  PubMed  Google Scholar 

  109. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159. doi:Electronic Resource Number (88)

    CAS  PubMed  Google Scholar 

  110. Ward NC, Wu JH, Clarke MW, Puddey IB, Burke V, Croft KD, Hodgson JM (2007) The effect of vitamin E on blood pressure in individuals with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J Hypertens 25:227–234. doi:Electronic Resource Number (108)

    CAS  PubMed  Google Scholar 

  111. Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M, Heitzer T, Stasch JP, Griendling KK, Harrison DG, Bohm M, Meinertz T, Munzel T (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99:2027–2033. doi:Electronic Resource Number (48)

    CAS  PubMed  Google Scholar 

  112. Wei Y, Whaley-Connell AT, Chen K, Habibi J, Uptergrove GM, Clark SE, Stump CS, Ferrario CM, Sowers JR (2007) NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat. Hypertension 50:384–391. doi:Electronic Resource Number (61)

    CAS  PubMed  Google Scholar 

  113. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, Marsden PA (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 17:2479–2488. doi:Electronic Resource Number (46)

    CAS  PubMed  Google Scholar 

  114. Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, Creager MA (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701. doi:Electronic Resource Number (73)

    CAS  PubMed  Google Scholar 

  115. Xia L, Wang XX, Hu XS, Guo XG, Shang YP, Chen HJ, Zeng CL, Zhang FR, Chen JZ (2008) Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. Br J Pharmacol 155:387–394. doi:Electronic Resource Number (122)

    CAS  PubMed  Google Scholar 

  116. Yang Y, Hou H, Haller EM, Nicosia SV, Bai W (2005) Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J 24:1021–1032. doi:Electronic Resource Number (93)

    CAS  PubMed  Google Scholar 

  117. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380. doi:Electronic Resource Number (94)

    CAS  PubMed  Google Scholar 

  118. Yla-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D (1989) Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 84:1086–1095. doi:Electronic Resource Number (52)

    CAS  PubMed  Google Scholar 

  119. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 103:2653–2658. doi:Electronic Resource Number (65)

    CAS  PubMed  Google Scholar 

  120. Zbikowska HM, Olas B, Wachowicz B, Krajewski T (1999) Response of blood platelets to resveratrol. Platelets 10:247–252. doi:Electronic Resource Number (120)

    CAS  PubMed  Google Scholar 

  121. Zhang Q, Zhang RY, Zhang JS, Hu J, Yang ZK, Ni J, Fang YH, Zhang X, Shen WF (2006) One-year clinical outcomes of Chinese sirolimus-eluting stent in the treatment of unselected patients with coronary artery disease. Chin Med J (Engl) 119:165–168. doi:Electronic Resource Number (66)

    Google Scholar 

  122. Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, Wei YS, Cai H, Liu DP, Liang CC (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80:191–199. doi:Electronic Resource Number (104)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Lüscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Camici, G.G. & Lüscher, T.F. Cardiovascular determinants of life span. Pflugers Arch - Eur J Physiol 459, 315–324 (2010). https://doi.org/10.1007/s00424-009-0727-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0727-2

Keywords

Navigation