Skip to main content

Advertisement

Log in

Heat exposure does not alter eccentric exercise-induced increases in mitochondrial calcium and respiratory dysfunction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Eccentric exercise can lead to muscle damage including dramatic changes to mitochondrial calcium content (MCC) and impaired respiratory function. Heat acclimation can create a cross-tolerance to a number of stresses including eccentric exercise but little is known about any protection to mitochondria. We hypothesised that intermittent heat exposure will lead to improved control of MCC and to preserved mitochondrial function following eccentric exercise. Sprague–Dawley rats were exposed to 3 weeks of intermittent heat exposure (36°C, 40% relative humidity, 6 h/day, 5 days a week) or kept in cool conditions (20°C). Animals were then assigned to a control or exercise group (−14°C decline treadmill exercise for 90 min). MCC, mitochondrial respiration and mitochondrial permeability transition pore opening (mPTP) were measured in mitochondria isolated from the red quadriceps in animals killed immediately, 2 h and 48 h post-exercise. Results showed that heat exposure was associated with lower plasma creatine kinase levels (p < 0.05) post-exercise suggesting lower levels of muscle damage. There was a significant (~500%) rise in MCC (p < 0.001) and a reduction in mitochondrial respiratory control ratio (p < 0.001) 48 h post-exercise. mPTP displayed increased (p < 0.05) sensitivity to calcium immediately and 48 h post-exercise. Thus, decline running led to significant impairment of mitochondria respiration and calcium loading which was more pronounced 48 h post-exercise compared with earlier time points. MCC levels and mitochondrial function were not altered by heat exposure. In conclusion, intermittent heat exposure does not appear to provide protection against mitochondrial dysfunction resulting from eccentric exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong RB, Ogilvie RW, Schwane JA (1983) Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 54:80–93

    PubMed  CAS  Google Scholar 

  • Barakat HA, Kasperek GJ, Dohm GL, Tapscott EB, Snider RD (1982) Fatty acid oxidation by liver and muscle preparations of exhaustively exercised rats. Biochem J 208:419–424

    PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Johnson PL, Thakar JH (1998) Reversal of impaired oxidative phosphorylation and calcium overloading in the skeletal muscle mitochondria of CHF-146 dystrophic hamsters. Mol Chem Neuropathol 34:53–77

    Article  PubMed  CAS  Google Scholar 

  • Bianchi C, Fato R, Angelin A, Trombetti F, Ventrella V, Borgatti AR, Fattorusso E, Ciminiello P, Bernardi P, Lenaz G, Parenti Castelli G (2004) Yessotoxin, a shellfish biotoxin, is a potent inducer of the permeability transition in isolated mitochondria and intact cells. Biochim Biophys Acta 1656:139–147

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  PubMed  CAS  Google Scholar 

  • Cassuto Y (1968) Metabolic adaptations to chronic heat exposure in the golden hamster. Am J Physiol 214:1147–1151

    PubMed  CAS  Google Scholar 

  • Cassuto Y, Chaffee RR (1966) Effects of prolonged heat exposure on the cellular metabolism of the hamster. Am J Physiol 210:423–426

    PubMed  CAS  Google Scholar 

  • Chen W, Ruell PA, Ghoddusi M, Kee A, Hardeman EC, Hoffman KM, Thompson MW (2007) Ultrastructural changes and sarcoplasmic reticulum Ca2+ regulation in red vastus muscle following eccentric exercise in the rat. Exp Physiol 92:437–447

    Article  PubMed  CAS  Google Scholar 

  • Choksi KB, Boylston WH, Rabek JP, Widger WR, Papaconstantinou J (2004) Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta (BBA) Mol Basis Dis 1688:95–101

    CAS  Google Scholar 

  • Davies KJA, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Duan C, Delp MD, Hayes DA, Delp PD, Armstrong RB (1990) Rat skeletal muscle mitochondrial [Ca2+] and injury from downhill walking. J Appl Physiol 68:1241–1251

    PubMed  CAS  Google Scholar 

  • Fernstrom M, Tonkonogi M, Sahlin K (2004) Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. J Physiol 554:755–763

    Article  PubMed  Google Scholar 

  • Fernstrom M, Bakkman L, Tonkonogi M, Shabalina IG, Rozhdestvenskaya Z, Mattsson CM, Enqvist JK, Ekblom B, Sahlin K (2007) Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise. J Appl Physiol 102:1844–1849

    Article  PubMed  Google Scholar 

  • Gnaiger E (2009) Mitochondrial respiratory control. In: Gnaiger E (ed) Textbook on mitochondrial physiology. Mitochondrial Physiological Society

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102

    Article  PubMed  CAS  Google Scholar 

  • Halestrap A (2005) Biochemistry: a pore way to die. Nature 434:578–579

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166

    Article  PubMed  CAS  Google Scholar 

  • He L, Lemasters JJ (2003) Heat shock suppresses the permeability transition in rat liver mitochondria. J Biol Chem 278:16755–16760

    Article  PubMed  CAS  Google Scholar 

  • Horowitz M, Eli-Berchoer L, Wapinski I, Friedman N, Kodesh E (2004) Stress-related genomic responses during the course of heat acclimation and its association with ischemic-reperfusion cross-tolerance. J Appl Physiol 97:1496–1507

    Article  PubMed  CAS  Google Scholar 

  • Huser J, Blatter LA (1999) Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem J 343:311–317

    Article  PubMed  CAS  Google Scholar 

  • Kano Y, Padilla DJ, Behnke BJ, Hageman KS, Musch TI, Poole DC (2005) Effects of eccentric exercise on microcirculation and microvascular oxygen pressures in rat spinotrapezius muscle. J Appl Physiol 99:1516–1522

    Article  PubMed  Google Scholar 

  • Kavanagh NI, Ainscow EK, Brand MD (2000) Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria. Biochim Biophys Acta 1457:57–70

    Article  PubMed  CAS  Google Scholar 

  • Kristal BS, Staats PN, Shestopalov AI (2000) Biochemical characterization of the mitochondrial permeability transition in isolated forebrain mitochondria. Dev Neurosci 22:376–383

    Article  PubMed  CAS  Google Scholar 

  • Madsen K, Ertbjerg P, Djurhuus MS, Pedersen PK (1996a) Calcium content and respiratory control index of skeletal muscle mitochondria during exercise and recovery. Am J Physiol 271:E1044–E1050

    PubMed  CAS  Google Scholar 

  • Madsen K, Ertbjerg P, Pedersen PK (1996b) Calcium content and respiratory control index of isolated skeletal muscle mitochondria: effects of different isolation media. Anal Biochem 237:37–41

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes J, Lumini J, Fraga M, Oliveira PJ, Ascensao A (2009) Eccentric exercise impairs respiratory function and increases susceptibility to permeability transition in skeletal muscle mitochondria: 717: May 28 8:30 AM–8:45 AM. Med Sci Sports Exerc 41(5) Suppl 60

  • Maloyan A, Palmon A, Horowitz M (1999) Heat acclimation increases the basal HSP72 level and alters its production dynamics during stress. Am J Physiol Regul Integr Comp Physiol 276:R1506–R1515

    CAS  Google Scholar 

  • Markwell MAK, Haas SM, Bieber L, Tolbert N (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  PubMed  CAS  Google Scholar 

  • Mildazien V, Baniene R, Nauciene Z, Marcinkeviciute A, Morkuniene R, Borutaite V, Kholodenko B, Brown GC (1996) Ca2+ stimulates both the respiratory and phosphorylation subsystems in rat heart mitochondria. Biochem J 320:329–334

    Google Scholar 

  • Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol 571:669–681

    Article  PubMed  CAS  Google Scholar 

  • Mogensen M, Sahlin K, Fernström, Glintborg D, Vind BF, Beck-Nielsen H, Højlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599

  • Molnar AM, Servais S, Guichardant M, Lagarde M, Macedo DV, Pereira-Da-Silva L, Sibille B, Favier R (2006) Mitochondrial H2O2 production is reduced with acute and chronic eccentric exercise in rat skeletal muscle. Antioxid Redox Signal 8:548–558

    Article  PubMed  CAS  Google Scholar 

  • Moseley PL (1997) Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83:1413–1417

    PubMed  CAS  Google Scholar 

  • Mukherjee A, Wong TM, Templeton G, Buja LM, Willerson JT (1979) Influence of volume dilution, lactate, phosphate, and calcium on mitochondrial functions. Am J Physiol 237:H224–H238

    PubMed  CAS  Google Scholar 

  • Nikolaidis MG, Jamurtas AZ, Paschalis V, Fatouros IG, Koutedakis Y, Kouretas D (2008) The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med (Auckland, NZ) 38:579

    Article  Google Scholar 

  • Nosaka K, Muthalib M, Lavender A, Laursen P (2007) Attenuation of muscle damage by preconditioning with muscle hyperthermia 1-day prior to eccentric exercise. Eur J Appl Physiol 99:183–192

    Article  PubMed  CAS  Google Scholar 

  • Saga N, Katamoto S, Naito H (2008) Effect of heat preconditioning by microwave hyperthermia on human skeletal muscle after eccentric exercise. J Sports Sci Med 7:176–183

    Google Scholar 

  • Shido O, Sakurada S, Nagasaka T (1991) Effect of heat acclimation on diurnal changes in body temperature and locomotor activity in rats. J Physiol 433:59

    PubMed  CAS  Google Scholar 

  • Shido O, Sakurada S, Kohda W, Nagasaka T (1994) Day–night changes of body temperature and feeding activity in heat-acclimated rats. Physiol Behav 55:935–939

    Article  PubMed  CAS  Google Scholar 

  • Shima Y, Kitaoka K, Yoshiki Y, Maruhashi Y, Tsuyama T, Tomita K (2008) Effect of heat shock preconditioning on ROS scavenging activity in rat skeletal muscle after downhill running. J Physiol Sci 58:341–348

    Article  PubMed  Google Scholar 

  • Sonobe T, Inagaki T, Poole DC, Kano Y (2008) Intracellular calcium accumulation following eccentric contractions in rat skeletal muscle in vivo: role of stretch-activated channels. Am J Physiol Regul Integr Comp Physiol 294:R1329–R1337

    Article  PubMed  CAS  Google Scholar 

  • Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257–264

    Article  PubMed  CAS  Google Scholar 

  • Szabadkai G, Duchen MR (2008) Mitochondria: the hub of cellular Ca2+ signaling. Physiology 23:84–94

    Article  PubMed  CAS  Google Scholar 

  • Tetievsky A, Cohen O, Eli-Berchoer L, Gerstenblith G, Stern MD, Wapinski I, Friedman N, Horowitz M (2008) Physiological and molecular evidence of heat acclimation memory: a lesson from thermal responses and ischemic cross-tolerance in the heart. Physiol Genomics 34:78–87

    Article  PubMed  CAS  Google Scholar 

  • Tian X, Ma X, Qiao D, Ma A, Yan F, Huang X (2005) mCICR is required for As2O3-induced permeability transition pore opening and cytochrome c release from mitochondria. Mol Cell Biochem 277:33–42

    Article  PubMed  CAS  Google Scholar 

  • Wahl M, Lucherini MJ, Gruenstein E (1990) Intracellular Ca2+ measurement with Indo-1 in substrate-attached cells: advantages and special considerations. Cell Calcium 11:487–500

    Article  PubMed  CAS  Google Scholar 

  • Walsh B, Tonkonogi M, Malm C, Ekblom B, Sahlin K (2001) Effect of eccentric exercise on muscle oxidative metabolism in humans. Med Sci Sports Exerc 33:436–441

    Article  PubMed  CAS  Google Scholar 

  • Yamada PM, Amorim FT, Moseley P, Robergs R, Schneider SM (2007) Effect of heat acclimation on heat shock protein 72 and interleukin-10 in humans. J Appl Physiol 103:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562:367–380

    Article  PubMed  CAS  Google Scholar 

  • Zaidan E, Sims NR (1994) The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J Neurochem 63:1812–1819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rozita Fathi and Talebi Umz for their assistance in measuring mitochondrial calcium content in the laboratory. Sports Knowledge Australia is acknowledged for providing PhD scholarship funding for Dr Ben Rattray.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Rattray.

Additional information

Communicated by Nigel A.S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rattray, B., Caillaud, C., Ruell, P.A. et al. Heat exposure does not alter eccentric exercise-induced increases in mitochondrial calcium and respiratory dysfunction. Eur J Appl Physiol 111, 2813–2821 (2011). https://doi.org/10.1007/s00421-011-1913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1913-4

Keywords

Navigation