Skip to main content

Advertisement

Log in

Design and finite element analysis of a short piezoelectric fiber-reinforced composite actuator

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Piezoelectric distributed actuators are exhaustively utilized in control of the structural deformation/vibration. These actuators are also used in the form of smart composite of which active fiber composite (AFC) and macro-fiber composite (MFC) are the most popular smart composites. In the present work, few shortcomings of MFC/AFC actuator in its structural applications are identified and those are alleviated through the proposition of a short piezoelectric fiber-reinforced composite (SPFRC) actuator. The SPFRC is composed of equally spaced coaxial short piezoelectric fibers embedded within the polymer matrix. Every fiber is poled along its length that yields maximum piezoelectric stress/strain within the composite along the same direction in effect of co-directional applied electric field. This piezoelectric effect quantified by the coefficient (e 11) is the main parameter in its use as an actuator with a special arrangement of electrodes in microscale. The SPFRC is designed with an objective of improved magnitude of major effective coefficient (e 11), and it is performed through a continuum micro-mechanics finite element analysis of its effective electro-elastic properties. The actuation-capability of SPFRC actuator according to its present design is verified by analyzing the geometrically nonlinear electro-elastic deformations of a simply supported smart beam. The micro-mechanics analysis reveals a significant magnitude of e 11 of SPFRC although it is lesser than the case of continuous fibers within the similar composite. However, the analysis of smart beam reveals better actuation-capability of the smart composite actuator when short fibers are used instead of continuous fibers retaining the same applied voltage and electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. James F.T., Sedat A., Newnham R.E.: Piezolectric sensors and sensor materials. J. Electroceram. 2(4), 257–272 (1998)

    Article  Google Scholar 

  2. Miller, S.E., Hubbard, J.E.: Observability of a Bernoulli–Euler beam using PVF2 as a distributed sensor. MIT Draper Laboratory Report (1987)

  3. Crawley E.F., Luis J.D.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    Article  Google Scholar 

  4. Cook A.C., Vel S.S.: Multiscale analysis of laminated plates with integrated piezoelectric fiber composite actuators. Compos. Struct. 94(2), 322–336 (2012)

    Article  Google Scholar 

  5. Prasanth S.S., Arockiarajan A.: Effective electromechanical response of macro-fiber composite (MFC): Analytical and numerical models. Int. J. Mechan. Sci. 77, 98–106 (2013)

    Article  Google Scholar 

  6. Wilkie W.K., Inman D.J., Lloyd J.M., High J.W.: Anisotropic laminar piezocomposite actuator incorporating machined PMN–PT single-crystal fibers. J. Intell. Mater. Syst. Struct. 17(1), 15–28 (2006)

    Article  Google Scholar 

  7. Bent A.A., Hagood N.W., Rodgers J.P.: Anisotropic actuation with piezoelectric fiber composites. J. Intell. Mater. Syst. Struct. 6(3), 338–349 (1995)

    Article  Google Scholar 

  8. High, J.W., Wilkie, W.K.: Method of fabricating NASA-standard macro-fiber composite piezoelectric actuators. National Aeronautics and Space Administration, Langley Research Center (2003)

  9. William, K.W., Robert, G.B., James, W.H., Robert, L.F., Richard, F.H., Anthony, J.Jr., Bruce, D.L., Paul, H.M.: Low-cost piezocomposite actuator for structural control applications. Proceedings SPIE 3991, Smart Structures and Materials 2000: Industrial and Commercial Applications of Smart Structures Technologies 323 (2000)

  10. Ray M.C.: Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int. J. Mechan. Mater. Design 3(4), 361–371 (2006)

    Article  Google Scholar 

  11. Bowen C.R., Nelson L.J., Stevens R., Cain M.G., Stewart M.: Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites. J. Electroceram. 16(4), 263–269 (2006)

    Article  Google Scholar 

  12. Sohn J.W., Choi S.B., Kim H.S.: Vibration control of smart hull structure with optimally placed piezoelectric composite actuators. Int. J. Mechan. Sci. 53(8), 647–659 (2011)

    Article  Google Scholar 

  13. Azzouz, M.S., Bevan, J.S., Ro, J.-J., Mei, C.: Finite element modeling of MFC/AFC actuators. Proceedings SPIE 326: Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures (2001)

  14. Kwak M.K., Heo S., Jeong M.: Dynamic modelling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators. J. Sound Vib. 321(3), 510–524 (2009)

    Article  Google Scholar 

  15. Kim H.S., Sohn J.W., Choi S.B.: Vibration control of a cylindrical shell structure using macro fiber composite actuators. Mechan. Based Des. Struct. Mach. 39(4), 491–506 (2011)

    Article  Google Scholar 

  16. Sohn, J.W., Kim, H.S., Kim, C.J., Ha, S.H., Choi, S.B.: Vibration suppression of hull structure using macro fiber composite actuators and sensors. Proceedings SPIE 6525: Active and Passive Smart Structures and Integrated Systems 652527-1 (2007)

  17. Sohn J.W., Kim H.S., Choi S.B., Kim K.S.: Experimental Investigation of Smart Hull Structures Based on Macro Fiber Composite Actuators. Key Eng. Mater. 326, 1419–1422 (2006)

    Article  Google Scholar 

  18. Wickramasinghe V.K., Hagood N.W.: Durability characterization of active fiber composite actuators for helicopter rotor blade applications. J. Aircraft 41(4), 931–937 (2004)

    Article  Google Scholar 

  19. Marinaki M., Marinakis Y., Stavroulakis GE.: Vibration control of beams with piezoelectric sensors and actuators using particle swarm optimization. Expert Syst. Appl. 38(6), 6872–6883 (2011)

    Article  Google Scholar 

  20. Schulz, M.J., Sundaresan, M.J., Ghoshal, A., Pai, P.F.: Active fiber composites for structural health monitoring. Proceeding SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics 13 (2000)

  21. Bent, A.A.: Active fiber composite material systems for structural control applications. Proceeding SPIE 3674, Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies 166 (1999)

  22. Sodano H.A., Park G., Inman D.J.: An investigation into the performance of macro-fiber composites for sensing and structural vibration applications. Mechan. Syst. Sign. Process. 18(3), 683–697 (2004)

    Article  Google Scholar 

  23. Wickramasinghe V.K., Hagood N.W.: Material characterization of active fiber composites for integral twist-actuated rotor blade application. Smart Mater. Struct. 13(5), 1155–1165 (2004)

    Article  Google Scholar 

  24. Melnykowycz M., Kornmann X., Huber C., Barbezat M., Brunner A.J.: Performance of integrated active fiber composites in fiber reinforced epoxy laminates. Smart Mater. Struct. 15(1), 204–212 (2006)

    Article  Google Scholar 

  25. Cesnik C.E., Shin S.: On the modeling of integrally actuated helicopter blades. Int. J. Solids Struct. 38(10), 1765–1789 (2001)

    Article  MATH  Google Scholar 

  26. Park S., Inman D.J., Yun C.B.: An outlier analysis of MFC-based impedance sensing data for wireless structural health monitoring of railroad tracks. Eng. Struct. 30(10), 2792–2799 (2008)

    Article  Google Scholar 

  27. Choi S.C., Park J.S., Kim J.H.: Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors. Compos. Struct. 76(4), 362–374 (2006)

    Article  Google Scholar 

  28. Kovalovs A., Barkanov E., Gluhihs S.: Active control of structures using macro-fiber composite (MFC). J. Phys.: Confer. Series 93(1), 012034 (2007)

    Google Scholar 

  29. Bilgen O., Kochersberger K.B., Inman D.J., Ohanian O.J.: Macro-fiber composite actuated simply supported thin airfoils. Smart Mater. Struct. 19(5), 055010 (2010)

    Article  Google Scholar 

  30. Ikeda T.: Fundamentals of Piezoelectricity. Oxford Univercity Press, Oxford (1990)

    Google Scholar 

  31. Dunn M.L., Taya M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30(2), 161–175 (1993)

    Article  MATH  Google Scholar 

  32. Furukawa T.: Piezoelectricity and pyroelectricity in polymers. IEEE Trans. Elect. Insul. 24(3), 375–395 (1989)

    Article  Google Scholar 

  33. Cady W.G.: Piezolectricity. McGraw-Hill, New York (1946)

    Google Scholar 

  34. Hill R.: Elastic properties of reinforced solid: Some theoretical principles. J. Mechan. Phys. Solids 11(5), 357–372 (1963)

    Article  MATH  Google Scholar 

  35. Odegard G.M.: Constitutive modeling of piezoelectric polymer pomposities. Acta Materialia 52(18), 5315–5330 (2004)

    Article  Google Scholar 

  36. Cook R.D., Malkus D.S., Plesha M.E., Witt R.J.: Concepts and applications of finite element analysis. Wiley, New York (2001)

    Google Scholar 

  37. Tiersten H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Book  Google Scholar 

  38. Chia C.Y.: Non-linear Analysis of Plates. McGraw-Hill, New York (1980)

    Google Scholar 

  39. Fallah N., Ebrahimnejad M.: Finite volume analysis of adaptive beams with piezoelectric sensors and actuators. Appl. Math. Model. 38(2), 722–737 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, S., Reddy, N.H. & Pavan Kumar, A.S. Design and finite element analysis of a short piezoelectric fiber-reinforced composite actuator. Arch Appl Mech 85, 691–711 (2015). https://doi.org/10.1007/s00419-015-0982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-0982-y

Keywords

Navigation