Skip to main content
Log in

Shear stress-induced upregulation of connexin 43 expression in endothelial cells on upstream surfaces of rat cardiac valves

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Endothelial expression of the gap junction proteins, connexin (Cx) 37, Cx40, and Cx43, varies within the vascular network. While previous studies suggest that shear stress may upregulate Cx43, it is not well understood if shear stress affects the expression of all endothelial connexins and to what extent. Endothelial cells on the upstream and downstream surfaces of cardiac valves are subjected to considerably different intensities of shear stress. We therefore reasoned that we could determine the extent hemodynamic forces affect the expression of Cx37, Cx40, and Cx43 by comparing their immunohistochemical distribution on the upstream and downstream surfaces of rat cardiac valves. We found 70- to 200-fold greater expression of Cx43 in the endothelial cells on the upstream than on the downstream surfaces. However, Cx37 was expressed almost equally in the endothelial cells on upstream and downstream surfaces, and Cx40, a major connexin in most vascular endothelial cells, was not detected on either surface. In addition to the heterogeneity in Cx43 expression, endothelial cells on the upstream surface were 35% to 65% smaller than those on the corresponding downstream surface. These results suggest that shear stress may affect endothelial cell size and Cx43 expression but not Cx37 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1, 2 Fig. 1
Fig. 2
Fig. 3
Fig. 4A, B
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JM, Stevenson BR, Jesaitis LA, Goodenough DA, Mooseker MS (1988) Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol 106:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Barker RJ, Price RL, Gourdie RG (2001) Increased co-localization of connexin43 and ZO-1 in dissociated adult myocytes. Cell Commun Adhes 8:205–208

    CAS  PubMed  Google Scholar 

  • Barker RJ, Price RL, Gourdie RG (2002) Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions. Circ Res 90:317–324

    Article  CAS  PubMed  Google Scholar 

  • Beblo DA, Veenstra RD (1997) Monovalent cation permeation through the connexin40 gap junction channel. Cs, Rb, K, Na, Li, TEA, TMA, TBA, and effects of anions Br, Cl, F, acetate, aspartate, glutamate, and NO3. J Gen Physiol 109:509–522

    Article  CAS  PubMed  Google Scholar 

  • Beyer EC, Paul DL, Goodenough DA (1987) Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 105:2621–2629

    Article  CAS  PubMed  Google Scholar 

  • Beyer EC, Paul DL, Goodenough DA (1990) Connexin family of gap junction proteins. J Membr Biol 116:187–194

    CAS  PubMed  Google Scholar 

  • Beyer EC, Reed KE, Westphale EM, Kanter HL, Larson DM (1992) Molecular cloning and expression of rat connexin40, a gap junction protein expressed in vascular smooth muscle. J Membr Biol 127:69–76

    CAS  PubMed  Google Scholar 

  • Brink PR, Cronin K, Banach K, Peterson E, Westphale EM, Seul KH, Ramanan SV, Beyer EC (1997) Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 273:C1386–C1396

    CAS  PubMed  Google Scholar 

  • Bruzzone R, Haefliger JA, Gimlich RL, Paul DL (1993) Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell 4:7–20

    CAS  PubMed  Google Scholar 

  • Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27

    CAS  PubMed  Google Scholar 

  • Cowan DB, Lye SJ, Langille BL (1998) Regulation of vascular connexin43 gene expression by mechanical loads. Circ Res 82:786–793

    CAS  PubMed  Google Scholar 

  • Davies PF, Mundel T, Barbee KA (1995) A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J Biomech 28:1553–1560

    Article  CAS  PubMed  Google Scholar 

  • DePaola N, Davies PF, Pritchard WF Jr, Florez L, Harbeck N, Polacek DC (1999) Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci U S A 96:3154–3159

    Article  CAS  PubMed  Google Scholar 

  • Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    PubMed  Google Scholar 

  • Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hulser DF, Willecke K (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129:805–817

    Article  CAS  PubMed  Google Scholar 

  • Eskin SG, Ives CL, McIntire LV, Navarro LT (1984) Response of cultured endothelial cells to steady flow. Microvasc Res 28:87–94

    Article  CAS  PubMed  Google Scholar 

  • Flagg-Newton J, Simpson I, Loewenstein WR (1979) Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science 205:404–407

    CAS  PubMed  Google Scholar 

  • Gabriels JE, Paul DL (1998) Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 83:636–643

    CAS  PubMed  Google Scholar 

  • Giepmans BN, Moolenaar WH (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 8:931–934

    CAS  PubMed  Google Scholar 

  • Giepmans BN, Verlaan I, Moolenaar WH (2001) Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin. Cell Commun Adhes 8:219–223

    CAS  PubMed  Google Scholar 

  • Hill CE, Phillips JK, Sandow SL (2001) Heterogeneous control of blood flow amongst different vascular beds. Med Res Rev 21:1–60

    Article  CAS  PubMed  Google Scholar 

  • Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52

    CAS  PubMed  Google Scholar 

  • Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S, Tsukita S (1993) The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 121:491–502

    Article  CAS  PubMed  Google Scholar 

  • Ko YS, Yeh HI, Rothery S, Dupont E, Coppen SR, Severs NJ (1999) Connexin make-up of endothelial gap junctions in the rat pulmonary artery as revealed by immunoconfocal microscopy and triple-label immunogold electron microscopy. J Histochem Cytochem 47:683–692

    CAS  PubMed  Google Scholar 

  • Koval M, Geist ST, Westphale EM, Kemendy AE, Civitelli R, Beyer EC, Steinberg TH (1995) Transfected connexin45 alters gap junction permeability in cells expressing endogenous connexin43. J Cell Biol 130:987–995

    Article  CAS  PubMed  Google Scholar 

  • Kwak BR, Mulhaupt F, Veillard N, Gros DB, Mach F (2002) Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 22:225–230

    Article  CAS  PubMed  Google Scholar 

  • Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347

    CAS  PubMed  Google Scholar 

  • Nakamura K, Inai T, Nakamura K, Shibata Y (1999) Distribution of gap junction protein connexin 37 in smooth muscle cells of the rat trachea and pulmonary artery. Arch Histol Cytol 62:27–37

    CAS  PubMed  Google Scholar 

  • Okuma A, Kuraoka A, Iida H, Inai T, Wasano K, Shibata Y (1996) Colocalization of connexin 43 and connexin 45 but absence of connexin 40 in granulosa cell gap junctions of rat ovary. J Reprod Fertil 107:255–264

    Article  CAS  PubMed  Google Scholar 

  • Unwin PN, Zampighi G (1980) Structure of the junction between communicating cells. Nature 283:545–549

    CAS  PubMed  Google Scholar 

  • van Kempen MJ, Jongsma HJ (1999) Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol 112:479–486

    Article  PubMed  Google Scholar 

  • Van Rijen H, van Kempen MJ, Analbers LJ, Rook MB, van Ginneken AC, Gros D, Jongsma HJ (1997) Gap junctions in human umbilical cord endothelial cells contain multiple connexins. Am J Physiol 272:C117–C130

    PubMed  Google Scholar 

  • Veenstra RD (1996) Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 28:327–337

    CAS  PubMed  Google Scholar 

  • Wang HZ, Veenstra RD (1997) Monovalent ion selectivity sequences of the rat connexin43 gap junction channel. J Gen Physiol 109:491–507

    Article  CAS  PubMed  Google Scholar 

  • White TW, Bruzzone R (1996) Multiple connexin proteins in single intercellular channels: connexin compatibility and functional consequences. J Bioenerg Biomembr 28:339–350

    CAS  PubMed  Google Scholar 

  • Willecke K, Heynkes R, Dahl E, Stutenkemper R, Hennemann H, Jungbluth S, Suchyna T, Nicholson BJ (1991) Mouse connexin37: cloning and functional expression of a gap junction gene highly expressed in lung. J Cell Biol 114:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Yeh HI, Dupont E, Coppen S, Rothery S, Severs NJ (1997) Gap junction localization and connexin expression in cytochemically identified endothelial cells of arterial tissue. J Histochem Cytochem 45:539–550

    CAS  PubMed  Google Scholar 

  • Yeh HI, Rothery S, Dupont E, Coppen SR, Severs NJ (1998) Individual gap junction plaques contain multiple connexins in arterial endothelium. Circ Res 83:1248–1263

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Koga Hideya Funds, Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (numbers 08770015, 09770010, 11770008, and 16590146), and the National Institutes of Health (grants HL-24136 and HL-59157 from the National, Heart, Lung, and Blood Institute and P50-CA90270 from the National Cancer Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuichiro Inai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inai, T., Mancuso, M.R., McDonald, D.M. et al. Shear stress-induced upregulation of connexin 43 expression in endothelial cells on upstream surfaces of rat cardiac valves. Histochem Cell Biol 122, 477–483 (2000). https://doi.org/10.1007/s00418-004-0717-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0717-6

Keywords

Navigation