Skip to main content

Advertisement

Log in

Relationship between anterior corneal asphericity and refractive variables

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The anterior corneal surface is closely modelled by a conic section that is fully described by asphericity (Q) and the apical radius of curvature. Computerized corneal topographers have allowed for more accurate and complete descriptions of corneal shape. Our objective was to compare anterior corneal asphericity (Q) values determined for different corneal diameters in eyes of different refractive state.

Methods

Q-values were determined in 118 eyes of 118 subjects using both a videokeratoscope (Atlas Mastervue, Humphrey Instruments-Zeiss) and Vol-CT 6.89 software (Sarver & Associates Inc.), which estimates Q-values for several corneal diameters (3.0 mm, 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm and 8.0 mm) using topographic data obtained with the instrument. For comparisons, Q-values were stratified three ways: by refractive error (myopic, emmetropic or hyperopic eyes), corneal power (low, intermediate and high) and corneal astigmatism (low, intermediate and high).

Results

Mean corneal asphericity was −0.35 ± 0.03, differing significantly from reported data (Student’s t-test). Asphericities determined using both methods did not vary significantly withh regard to refractive error or corneal power, but did differ among the corneal astigmatism groups (p < 0.01). A trend was observed towards more negative Q-values with increasing corneal diameter, but differences in corneal asphericity according to corneal diameter were only significant in the astigmatism group (p < 0.01).

Conclusion

Q-values varied according to the refractive properties examined. However, the relationship between refractive state and corneal asphericity was found to be determined more by the geometric properties of the eye (corneal power and axial length) than by manifest refraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bufidis T, Constas AGP, Mamtziou E (1998) The role of computerized corneal topography in rigid gas permeable contact lens fitting. CLAO J 24:206–209

    PubMed  CAS  Google Scholar 

  2. Maeda N, Klyce SD, Hamano H (1994) Alteration of corneal asphericity in rigid gas permeable contact lens induced warpage. CLAO J 20:27–31

    PubMed  CAS  Google Scholar 

  3. Anera R, Jiménez JR, Jiménez L et al (2003) Changes in corneal asphericity after laser in situ keratomileusis. J Cataract Refract Surg 29:762–768

    Article  PubMed  Google Scholar 

  4. Gatinel D, Hoang-Xuan T, Aznar DT (2001) Determination of corneal asphericity after myopia surgery with the laser excimer: a mathematical model. Invest Ophthalmol Vis Sci 42:1736–1742

    PubMed  CAS  Google Scholar 

  5. Applegate RA, Hilmantel G, Howland HC et al (2000) Corneal first surface optical aberrations and visual performance. J Refract Surg 16:507–514

    PubMed  CAS  Google Scholar 

  6. Holladay JT, Lynn MJ, Waring GO III et al (1991) The relationship of visual acuity, refractive error, and pupil size after radial keratotomy. Arch Ophthalmol 109:70

    PubMed  CAS  Google Scholar 

  7. Lotmar W (1971) Theoretical eye model with aspherics. J Opt Soc Am 61:1522–1529

    Article  Google Scholar 

  8. Mandel RB (1992) The enigma of corneal contour; Everett Kinsey Lecture. CLAO J 18:267–273

    Google Scholar 

  9. Lindsay R, Smith G, Atichson D (1998) Descriptors of corneal shape. Optom Vis Sci 75:156–158

    Article  PubMed  CAS  Google Scholar 

  10. Guillon M, Lydon DP, Wilson C (1986) Corneal topography: a clinical model. Ophthalmic Physiol Opt 6:47–56

    PubMed  CAS  Google Scholar 

  11. Holmes-Higging DK, Baker PC, Burris TE Silvestrini TA (1999) Characterization of the corneal asphericity surface with intrastromal corneal ring segments. J Refract Surg 15:520–528

    Google Scholar 

  12. Townsley MG (1970) New knowledge of the corneal contour. Contacto 14:38–43

    Google Scholar 

  13. Eghbali F, Yeung KK, Maloney RK (1995) Topographic determination of corneal asphericity and its lack of effect on the refractive outcome of radial keratotomy. Am J Ophthalmol 119:275–280

    PubMed  CAS  Google Scholar 

  14. Yebra-Pimentel E, Gonzalez-Méijome JM, Cerviño A et al (2004) Asfericidad corneal en una población de adultos jóvenes. Implicaciones clínicas. Arch Soc Esp Oftalmol 79:385–392

    PubMed  CAS  Google Scholar 

  15. Dubbelman M, Sicam VADP, Van der Heide GL (2006) The shape of the anterior and posterior surface of the aging human cornea. Vision Res 46:993–1001

    Article  PubMed  CAS  Google Scholar 

  16. Read SA, Collins MJ, Carney LG, Franklin RJ (2006) The topography of the central and peripherical cornea. Invest Ophthalmol Vis Sci 47:1404–1415

    Article  PubMed  Google Scholar 

  17. Patel S, Marshall J, Fitze FW, Gartry DS (1994) The shape of the corneal apical zone after laser excimer photorefractive keratectomy. Acta Ophthalmol (Copenh) 72:588–596

    Article  CAS  Google Scholar 

  18. Gonzalez-Méijome JM, Villa-Collar C, Montés-Micò R et al (2007) Asphericity of the anterior human cornea with different corneal diameters. J Cataract Refract Surg 33:465–473

    Article  PubMed  Google Scholar 

  19. Van Alphen GWHM (1961) On emmetropia and ametropia. Ophthalmologica 142:1–92

    Article  Google Scholar 

  20. Garner LF, Meng CK, Grosvenor TP et al (1990) Ocular dimensions and refractive power in Malay and Malanesian children. Ophthalmic Physiol Opt 10:234–238

    PubMed  CAS  Google Scholar 

  21. Goss DA, Cox VD, Herrin-Lawson GA et al (1990) Refractive error, axial length and height as a function of age in young myopes. Optom Vis Sci 67:332–338

    Article  PubMed  CAS  Google Scholar 

  22. Grosvenor T, Scott R (1994) Role of the axial length/corneal radius ratio in determining the refractive state of the eye. Optom Vis Sci 71:573–579

    Article  PubMed  CAS  Google Scholar 

  23. Goh WSH, Lam CSY (1994) Changes in refractive trends and optical components of Hong Kong Chinese aged 19–39 years. Ophthalmic Physiol Opt 14:378–382

    Article  PubMed  CAS  Google Scholar 

  24. Sheridan M, Douthwaite W (1989) Corneal asphericity and refractive error. Ophthalmic Physiol Opt 9:235–238

    Article  PubMed  CAS  Google Scholar 

  25. Mainstone J, Carney L, Andreson C et al (1998) Corneal Shape in hyperopia. Clinical Exp Optom 81:131–137

    Article  Google Scholar 

  26. Budak K, Khater TT, Friedman NJ et al (1999) Evaluation of relationships among refractive and topographic parameters. J Cataract Refract Surg 25:814–820

    Article  PubMed  CAS  Google Scholar 

  27. Llorente L, Barbero S, Cano D et al (2004) Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations. J Vis 4:288–298

    Article  PubMed  Google Scholar 

  28. Le Grand Y (1965) Optique Physiologique. Vol I: la dioptrique de l’oeil et sa correction. 3 ed. Masson Editeur, Paris

    Google Scholar 

  29. Carney L, Mainstone J, Henderson B (1997) Corneal topography and myopia. Invest Ophthalmol Vis Sci 38:311–320

    PubMed  CAS  Google Scholar 

  30. Mandell RB, St Helen R (1971) Mathematical model of the corneal contour. Br J Physiol Opt 26:183–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelia Nieto-Bona.

Additional information

The authors declare no financial or proprietary interests in any materials or methods mentioned. No sources of public and private financial support declared

Human sujects and informed consent

The authors declare that this research was performed following the tenets of the Declaration of Helsinki, and that informed consent was obtained from the subjects after the nature of the study had been explained to them in detail. The study protocol was approved by the Clinical Research Ethics Committee of the School of Optometry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieto-Bona, A., Lorente-Velázquez, A. & Mòntes-Micó, R. Relationship between anterior corneal asphericity and refractive variables. Graefes Arch Clin Exp Ophthalmol 247, 815–820 (2009). https://doi.org/10.1007/s00417-008-1013-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-1013-2

Keywords

Navigation