Skip to main content
Log in

Evidence of a mantle contribution in the genesis of magmatic rocks from the Neogene Batu Hijau district in the Sunda Arc, South Western Sumbawa, Indonesia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Whole-rock geochemical and radiogenic data are combined with in situ trace and isotopic analyses of amphibole grains to characterize the source and the emplacement mechanisms of the magmas of the Sunda arc in the Batu Hijau district, Sumbawa, Indonesia. The low-K calc-alkaline magmatic suite in the area is characterized by a distinctively juvenile signature (143Nd/144Nd ~0.5130). Whole-rock trace element and Pb isotopic data (207Pb/204Pb ~15.603) suggest the involvement of a minimal (<0.1%) sediment component in arc petrogenesis. During the petrogenesis of the calc-alkaline plutons, the involvement of fluids that were not entirely derived from the dehydration of a subducting slab is reflected in the mineral chemistry of the primary hydrous magmatic amphiboles, which contain very low B and Li concentrations. We argue that the B- and Li-poor fluids implicated in the petrogenesis of the calc-alkaline melts were at least partially derived from dehydration of uprising asthenospheric mantle. The δD values of selected hydrous magmatic amphibole grains range between ca. −70‰ and 0‰, consistent with an original mantle-derived signature, which was subsequently modified due to a de-hydrogenation process. We put forward the hypothesis that in the Batu Hijau district an arc-transverse fault system facilitated the rise of asthenosphere-derived melts above a kink, or tear, in the subducting Indian Ocean Plate that underlies the Sunda arc. The melts ascended to upper-crustal levels and underwent fractionation while interacting with the arc crust or metasomatized lithospheric mantle wedge. As a result of this study, we emphasize the significance of crustal-scale faults as conduits that connect the mantle to upper-crustal levels in arc settings. The de-hydrogenation process that the tonalite plutons underwent in the Batu Hijau district may have been crucial to the genesis of associated Cu–Au porphyry mineralization and the development of the Pliocene Batu Hijau deposit. Consequently, we argue that deep structures may facilitate the efficient release of mineralizing fluids at high crustal-levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arculus RJ, Powell R (1986) Source component mixing in the regions of arc magma generation. In: Hildreth W, Grove TL, Dungan MA (eds) Special section on open magmatic systems. J Geophys Res 91:5913–5926

  • Audley-Charles MG (1986) Rates of Neogene and Quarternary tectonic movements in the southern Banda Arc based on micropalaentology. J Geol Soc Lond 143:161–175

    Article  Google Scholar 

  • Barberi S, Bigioggero B, Boriani A, Cattaneo M, Cavallin A, Eva C, Cioni R, Gelmini R, Giorgetti F, Iaccarino S, Innocenti F, Marinelli G, Slejko D, Sudradjat A (1987) The Island of Sumbawa: a major structural discontinuity in the Indonesian Arc. Bollettino della Societa Geologica Italiana 106:547–620

    Google Scholar 

  • Beane RE, Bodnar RJ (1995) Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits. In: Pierce FW, Bolm JG (eds) Porphyry copper deposits of the American Cordillera. Ariz Geol Soc Dig 20:83–93

  • Beane RE, Titley SR (1981) Porphyry copper deposits, Part II. Hydrothermal alteration and mineralization. Economic geology 75th anniversary volume, pp 235–269

  • Blake DH, Ewart A (1974) Petrography and geochemistry of the Cape Hoskins volcanoes, New Britain, Papua New Guinea. J Geol Soc Aust 21:319–331

    Google Scholar 

  • Bouman C, Elliot T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79

    Article  Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995a) Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth Planet Sci Lett 135:1–11

    Article  Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995b) Mineral-aqueous fluid partitioning of trace elements at 900C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59:3331–3350

    Article  Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347

    Article  Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids; 2. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 71–136

    Google Scholar 

  • Candela PA (1989) Felsic magmas, volatiles, and metallogenesis. In: Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4:223–233

  • Clode C, Proffett J, Mitchell P, Munajat I (1999) Relationships of intrusion, wall-rock alteration and mineralisation in the Batu Hijau copper–gold porphyry deposit. In: 1999 Pacrim Congress, Bali, Indonesia, Australasian Institute of Mining and Metallurgy, proceedings, publication series no 4/99, pp 485–498

  • Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165

    Article  Google Scholar 

  • Coltorti M, Beccaluva L, Bonadiman C, Faccini B, Ntaflos T, Siena F (2004) Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos 75:115–139

    Article  Google Scholar 

  • Coogan LA, Wilson RN, Gillis KM, MacLeod CJ (2001) Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochim Cosmochim Acta 65:4339–4357

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  • Deloule E, Albarède F, Sheppard SMF (1991a) Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth Planet Sci Lett 105:543–553

    Article  Google Scholar 

  • Deloule E, Fance-Lanord C, Albarède F (1991b) D/H analysis of minerals by ion probe. Geochem Soc Spec Publ 3:53–62

    Google Scholar 

  • Deloule E, Paillat O, Pichavant M, Caillet B (1995) Ion microprobe determination of water in silicate glasses: methods and applications. Chem Geol 125:19–28

    Article  Google Scholar 

  • DePaolo DJ, Johnson RW (1979) Magma genesis in the New Britain island-arc: constraints from Nd and Sr isotopes and trace-element patterns. Contrib Mineral Petrol 70:367–379

    Article  Google Scholar 

  • Einaudi MT (1995) Topics in porphyry copper-gold and related deposits. Unpublished short course for Newmont Western Pacific Exploration Group, 31 p

  • Elburg MA, Foden J (1998) Temporal changes in arc magma geochemistry, northern Sulawesi, Indonesia. Earth Planet Sci Lett 163:381–398

    Article  Google Scholar 

  • Elburg MA, Foden J (1999) Sources for magmatism in central Sulawesi: geochemical and Sr–Nd–Pb isotopic constraints. Chem Geol 156:67–93

    Article  Google Scholar 

  • Elburg MA, van Bergen MJ, Foden JD (2004) Subducted upper and lower continental crust contributes to magmatism in the collision sector of the Sunda-Banda Arc, Indonesia. Geology 32:41–44

    Article  Google Scholar 

  • Elburg MA, Foden J, van Bergen M, Zulkarnain I (2005) Australia and Indonesia in collision: geochemical sources of magmatism. J Volcanol Geotherm Res 140:25–47

    Article  Google Scholar 

  • Fiorentini ML, Beresford SW, Deloule E, Hanski E, Stone WE, Pearson NJ (2008) The role of mantle-derived volatiles in the petrogenesis of Palaeoproterozoic ferropicrites in the Pechenga Greenstone Belt, northwestern Russia: insights from in situ microbeam and nanobeam analysis of hydromagmatic amphibole. Earth Planet Sci Lett 268:2–14

    Article  Google Scholar 

  • Fletcher IR, Garwin SL, McNaughton NJ (2000) SHRIMP U-Pb dating of Pliocene zircons. In: Woodhead JD, Hergt JM, Noble WP (eds) Beyond 2000: new frontiers in isotope geoscience, Lorne, 2000, abstracts and proceedings, pp 73–74

  • Foden JD (1983) The petrology of the calcalkaline lavas of Rindjani Volcano, East Sunda Arc: a model for island arc petrogenesis. J Petrol 24:98–130

    Google Scholar 

  • Gammons CH, Williams-Jones AE (1997) Chemical mobility of gold in the porphyry-epithermal environment. Econ Geol 92:45–59

    Article  Google Scholar 

  • Garwin SL (2000) The setting, geometry and timing of intrusion-related hydrothermal systems in the vicinity of the Batu Hijau porphyry copper-gold deposit, Sumbawa, Indonesia. Unpublished Ph.D. thesis, University of Western Australia, Nedlands, Western Australia, Australia, 320 pp (plus figures and appendices)

  • Garwin S (2002) The geologic setting of intrusion-related hydrothermal systems near the Batu Hijau porphyry copper-gold deposit, Sumbawa, Indonesia. In: Goldfarb RJ, Nielsen R (eds) Integrated methods for discovery, Soc Econ Geol Special Publ 9:333–366

  • Garwin S, Hall R, Watanabe Y (2005) Tectonic setting, geology and gold and copper mineralization in Cenozoic magmatic arcs of Southeast Asia and the west Pacific. In: Hedenquist J, Goldfarb R, Thompson J (eds) Economic geology 100th anniversary volume, Soc Econ Geol, pp 891–930

  • Gill JB (1981) Orogenic andesites and plate tectonics. Berlin, Federal Republic of Germany, Springer Verlag, 401 pp

  • Gillis KM, Coogan LA, Chaussidon M (2003) Volatile element (B, Cl, F) behaviour in the roof of an axial magma chamber from the East Pacific Rise. Earth Planet Sci Lett 213:447–462

    Article  Google Scholar 

  • Graham CM, Harmon RS, Sheppard SMF (1984) Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water. Am Mineral 69:128–138

    Google Scholar 

  • Green TH, Hauri EH, Gaetani GA, Adam J (2006) New calculations on water storage in the upper mantle, and implications for mantle melting models. Geochim Cosmochim Acta 70:A215

    Article  Google Scholar 

  • Hall R (1996) Reconstructing Cenozoic SE Asia. In: Hall R, Blundell D (eds) Tectonic evolution of Southeast Asia. Geol Soc Special Publ 106:153–184

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of Southeast Asia and the southwest Pacific: computer-based reconstructions, models and animations. J Asian Earth Sci 20:353–431

    Article  Google Scholar 

  • Hamilton W (1979) Tectonics of the Indonesian region. U.S. Geological Survey, professional paper 1078, 345 pp

  • Harford CL, Sparks RSJ (2001) Recent remobilization of shallow-level intrusions on Montserrat revealed by hydrogen isotope composition of amphiboles. Earth Planet Sci Lett 185:285–297

    Article  Google Scholar 

  • Hawkesworth CJ, O’Nions RK, Pankhurst RJ, Hamilton PJ, Evensen NM (1977) A geochemical study of island-arc and back-arc tholeiites from the Scotia Sea. Earth Planet Sci Lett 36:253–262

    Article  Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC, Lopez EL (1986) Multiple sources for basaltic arc rocks from the Southern Volcanic Zone of the Andes (34 degrees–41 degrees S): trace element and isotopic evidence from contributions from subducted oceanic crust, mantle, and continental crust. In: Hildreth W, Grovve TL, Dungan MA (eds) Special section on open magmatic systems. J Geophys Res 91:5963–5983

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis, Part 1, A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Article  Google Scholar 

  • Kopp H, Flueh ER, Petersen CJ, Weinrebe W, Wittwer A (2006) The Java margin revisited: evidence for subduction erosion off Java. Earth Planet Sci Lett 242:130–142

    Article  Google Scholar 

  • Kuno H (1959) Origin of Cenozoic petrographic provinces of Japan and surrounding areas. Bull Volcanol 20:37–76

    Article  Google Scholar 

  • Kuno H (1968) Differentiation of basalt magmas. Basalts: the Poldervaart treatise on rocks of basaltic composition, vol 2, pp 623–688

  • Kusakabe M, Matsubaya O (1986) Volatiles in magmas, volcanic gases, and thermal waters (in Japanese with English abstract). Bull Volcanol Soc Jpn 30:267–283

    Google Scholar 

  • Kyser TK, O’Neill JR (1984) Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta 48:2123–2133

    Article  Google Scholar 

  • LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite and basanite melt. Earth Planet Sci Lett 135:13–30

    Article  Google Scholar 

  • Le Maitre RW (1984) A proposal by the IUGS subcommision on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Aust J Earth Sci 31:243–255

    Article  Google Scholar 

  • Leake BE (1978) Nomenclature of amphiboles. Am Mineral 63:1023–1052

    Google Scholar 

  • Mason DR, McDonald JA (1978) Intrusive rocks and porphyry copper occurrences of the Papua New Guinea-Solomon islands region: a reconnaissance study. In: Gustafson LB, Titley SR (eds) Porphyry copper deposits of the southwestern Pacific islands and Australia. Econ Geol 73:878–890

  • McCaffrey R (1988) Active tectonics of the eastern Sunda and Banda arcs. J Geophys Res B 93:15163–15182

    Article  Google Scholar 

  • McCaffrey R (1996) Slip partioning at convergent plate boundaries of SE Asia. In: Hall R, Blundell D (eds) Tectonic evolution of Southeast Asia. Geol Soc Special Publ 106:3–18

  • McDonough WF, Sun SS (1995) The chemical composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McInnes BIA, Evans NJ, Sukarna D, Permanadewi S, Garwin S, Belasouva E, Griffen B, Fu F (2004) Thermal histories of Indonesian porphyry Cu-Au deposits determined by U-Th-He, U-Pb, Re-Os, K-Ar and Ar-Ar methods. In: Muhling J (ed) SEG 2004 predicted mineral discovery under cover—extended abstracts, Centre for Global Metallogeny. UWA Publ 33:343–346

  • Miyagi I, Matsubaya O (2003) Hydrogen isotopic composition of hornblende and biotite phenocrysts from Japanese arc volcanoes: evaluation of alteration process of the hydrogen isotopic ratios by degassing and re-equilibration. J Volcanol Geotherm Res 126:157–168

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Google Scholar 

  • Ota T, Kobayashi K, Kunihiro T, Nakamura E (2008) Boron cycling by subducted lithosphere: insights from diamondiferous tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt. Geochim Cosmochim Acta 72:3531–3541

    Article  Google Scholar 

  • Othman DB, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94:1–21

    Article  Google Scholar 

  • Pearce JA (1996) Trace element geochemsitry of volcanic rocks: application for massive sulphide exploration. In: Wyman DA (ed) Geological association of Canada short course notes, vol 12, pp 79–114

  • Powell W, Zhang M, O’Reilly SY, Tiepolo M (2004) Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos 75:141–171

    Article  Google Scholar 

  • Richardson AN, Blundell DJ (1996) Continental collision in the Banda arc. In: Hall R, Blundell D (eds) Tectonic evolution of Southeast Asia. Geol Soc Special Publ 106:47–60

  • Rowe MC, Kent AJR, Thornber CR (2008) Using amphibole phenocrysts to track vapor transfer during magma crystallization and transport: an example from Mt St. Helens, Washington. J Volcanol Geophys Res 178:593–607

    Article  Google Scholar 

  • Rudnick RL, Tomascak PB, Njo HB, Gardner LR (2004) Extreme lithium isotopic signatures of peridotite xenoliths and isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol 212:45–57

    Article  Google Scholar 

  • Shaw AM, Hauri EH, Fischer TP, Hilton DR, Kelley KA (2008) Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-earth water cycle. Earth Planet Sci Lett 275:138–145

    Article  Google Scholar 

  • Shimizu K, Komiya T, Hirose K, Shimizu N, Marayuma S (2001) Cr-spinel, an excellent micro-container for retaining primitive melts—implications for a hydrous plume origin for komatiites. Earth Planet Sci Lett 189:177–188

    Article  Google Scholar 

  • Stone WE, Deloule E, Beresford SW, Fiorentini ML (2005) Anomalously high δD values for archean ferropicrite melt: implications for magmatic degassing. Can Mineral 43:1735–1744

    Article  Google Scholar 

  • Sudradjat A, Andimangga S, Suwarna N (1998) Geological map of the Sumbawa quadrangle, Nusa Tenggara, Indonesia: Bandung, Indonesia, Geological research and development centre

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Special Publ 42:313–345

  • Sun W, Arculus RJ, Kamenetsky VS, Binns R (2004) Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431:975–978

    Article  Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell Science, Cambridge, Massachusetts, 211 pp

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–452

    Article  Google Scholar 

  • Titley SR, Beane RE (1981) Porphyry copper deposits: Part 1, Geologic settings, petrology, and tectogenesis. In: Skinner BJ (ed) Economic geology 75th anniversary volume, pp 214–235

  • Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238

    Article  Google Scholar 

  • Turner S, Foden J (2001) U, Th, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda Arc lavas: predominance of a subducted sediment component. Contrib Mineral Petrol 142:43–57

    Google Scholar 

  • Turner S, Foden J, Rhiannon G, Peter E, Rick V, Elburg M, George G (2003) Rates and processes of potassic magma evolution beneath Sangeang Api Volcano, East Sunda Arc, Indonesia. J Petrol 44:491–515

    Article  Google Scholar 

  • van Bergen MJ, Vroon PZ, Hoogewerff JA (1993) Geochemical and tectonic relationships in the East Indonesian arc-continent collision region, implications for the subduction of the Australian passive margin. Tectonophysics 223:97–116

    Article  Google Scholar 

  • Varne R, Foden JD (1986) Geochemical and isotopic systematics of eastern Sunda Arc volcanics: implications for mantle sources and mantle mixing processes. In: Wezel FC (ed) The origin of arcs. Elsevier, Amsterdam, pp 159–189

    Google Scholar 

  • Vroon PZ, van Bergen MJ, White WM, Varekamp JC (1993) Sr-Nd-Pb isotope systematics of the Banda Arc, Indonesia: combined subduction and assimilation of continental material. J Geophys Res 98:349–366

    Article  Google Scholar 

  • White WM, Dupre B (1986) Sediment subduction and magma genesis in the lesser Antilles: isotopic and trace element constraints. In: Hildreth W, Grove TL, Dungan MA (eds) Special section on open magmatic systems. J Geophys Res 91:5927–5941

  • White WM, Patchett J (1984) Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth Planet Sci Lett 67:167–185

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis; a global tectonic approach. Unwin Hyman, London, UK, 466 pp

  • Woodhead JD, Fraser DG (1985) Pb, Sr and (super 10) Be isotopic studies of volcanic rocks from the northern Mariana Islands: implications for magma genesis and crustal recycling in the western Pacific. Geochim Cosmochim Acta 49:1925–1930

    Article  Google Scholar 

  • Woodhead JD, Johnson RW (1993) Isotopic and trace-element profiles across the New Britain island arc, Papua New Guinea. Contrib Mineral Petrol 113:479–491

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support given by the Australian Research Council: sample preparation and all analytical costs were funded by grant DP0345971. We thank three anonymous reviewers for constructive comments and criticism of a previous version of the manuscript. We would also like to thank Etienne Deloule and Norman Pearson for assistance during analytical sessions. Insightful comments and stimulating discussion with Steve Beresford, Craig Hart, John Mavrogenes, Cam McCuaig and Ignacio Gonzalez-Alvarez are greatly appreciated. The field-work, whole-rock trace element and radiogenic isotopic studies, and radiometric age-dating presented in this study are compiled from the Ph.D. thesis of the second author, who acknowledges the support of Newmont Mining Corporation. This study used instrumentation funded by ARC LIEF and DEST Systemic Infrastructure Grants, Macquarie University and industry (www.es.mq.edu.au/GEMOC/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco L. Fiorentini.

Additional information

Communicated by C. Ballhaus.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiorentini, M.L., Garwin, S.L. Evidence of a mantle contribution in the genesis of magmatic rocks from the Neogene Batu Hijau district in the Sunda Arc, South Western Sumbawa, Indonesia. Contrib Mineral Petrol 159, 819–837 (2010). https://doi.org/10.1007/s00410-009-0457-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0457-7

Keywords

Navigation