Skip to main content

Advertisement

Log in

Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Rocks of the Cerro del Almirez ultramafic massif (Sierra Nevada, Betic Cordillera, S. Spain) record the high-pressure dehydration of antigorite–olivine serpentinite to form chlorite harzburgite (ol + opx + chl). In the field, these two rock types are separated by a well-defined isograd. Titanian clinohumite (TiCl) and olivine show textural and compositional differences depending on the rock type. OH–TiCl occurs in the serpentinite as disseminated grains and in veins. F–OH–TiCl is observed exclusively in the chlorite harzburgite, where it occurs as porphyroblastic grains and within prograde olivine as irregular and lamellar, planar intergrowths at microscopic and submicroscopic scales. Petrological evidence of partial to complete breakdown of TiCl to olivine + ilmenite is preserved in both rock types. Chlorite harzburgite is characterized by a brown pleochroic olivine with abundantally oriented microscopic to submicroscopic oxide particles. The mean Ti-content of the brown olivine is 144 ppm. The brown olivine preserves TiCl lamellae that sometimes grade into ghost lamellae outlined by the oxide trails. This observation suggests that some of the oxide inclusions in the brown olivine are derived from the breakdown of TiCl intergrowths. Thermodynamic modelling of selected Almirez bulk rock compositions indicates a temperature increase from 635°C to 695°C, at pressures ranging from 1.7 GPa to 2.0 GPa, as the cause for the compositional adjustment of TiCl between the Almirez antigorite serpentinite and chlorite harzburgite. These PT estimates are in good agreement with the sequence of phase relations observed in the field. The computed phase diagrams in conjunction with the geothermal conditions envisaged for different subduction settings indicate that TiCl is stable in the vicinity of the antigorite serpentinite/chlorite harzburgite phase boundary in some subduction settings. In these circumstances, clinohumite–olivine intergrowths in chlorite harzburgite may act as a sink for high field strength elements, and probably other elements, that are present in the mantle–wedge fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arai S (1975) Contact metamorphosed dunite–harzburgite complex in Chugoku District, Western Japan. Contrib Mineral Petrol 52:1–16

    Article  CAS  Google Scholar 

  • Bearth P (1967) Die Ophiolithe der Zone von Zermatt-Saas Fee. Beitr Geol Karte Schweiz NF 132:130

    Google Scholar 

  • Bedini RM, Bodinier JL (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African Rift. Geochim Cosmochim Acta 63:3883–3900

    CAS  Google Scholar 

  • Bodinier JL, Merlet C, Bedini RM, Simien F, Remaidi M, Garrido CJ (1996) Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim Cosmochim Acta 60:545–550

    CAS  Google Scholar 

  • Bose K, Navrotsky A (1998) Thermochemistry and phase equilibria of hydrous phases in the system MgO–SiO2–H2O: implications for volatile transport to the mantle. J Geophys Res-Solid Earth 103:9713–9719

    Article  CAS  Google Scholar 

  • Bromiley GD, Pawley AR (2003) The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high-pressure stability. Am Miner 88:99–108

    CAS  Google Scholar 

  • Brugnatelli L (1904) Über den Titanolivin der Umgebung von Chiesa in Val Malenco; ein Beitrag zur Kenntnis des Titanolivin. Z Kristallogr Miner 39:209–219

    Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett (in review)

    Google Scholar 

  • Damour M (1879) Note sur le peridot titanifère de Zermatt en Valais. Bull Soc Fr Miner 2:15

    Google Scholar 

  • De Quervain T (1938) Zur Kenntnis des Titanklinohumites (Titanolivine). Schweiz Mineral Petrogr Mitt 18:591–604

    Google Scholar 

  • Drury MR (1991) Hydration-induced climb dissociation of dislocations in naturally deformed mantle olivine. Phys Chem Miner 18:106–116

    CAS  Google Scholar 

  • Dymek RF, Boak JL, Brothers SC (1988) Titanian chondrodite-bearing and titanian clinohumite-bearing metadunite from the 3,800 Ma Isua Supracrustal Belt, West Greenland—Chemistry, Petrology, and Origin. Am Miner 73:547–558

    CAS  Google Scholar 

  • Engi M, Lindsley DH (1980) Stability of titanian clinohumite—experiments and thermodynamic analysis. Contrib Mineral Petrol 72:415–424

    CAS  Google Scholar 

  • Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506

    Google Scholar 

  • Evans BW, Johannes W, Oterdoom H, Trommsdorff V (1976) Stability of chrysotile and antigorite in the serpentinite multisystem. Schweiz Miner Petrogr Mitt 56:79–93

    CAS  Google Scholar 

  • Evans BW, Trommsdorff V (1970) Regional metamorphism of ultramafic rocks in the Central Alps: parageneses in the system CaO–MgO–SiO2–H2O. Schweiz Miner Petrogr Mitt 50:481–492

    CAS  Google Scholar 

  • Evans BW, Trommsdorff V (1983) Fluorine-hydroxyl titanian clinohumite in Alpine recrystallized garnet peridotite: compositional controls and petrologic significance. Am J Sci 283:355–369

    Google Scholar 

  • Frost BR (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. J Petrol 16:272–313

    CAS  Google Scholar 

  • García Casco A, Sánchez Navas A, Torres Roldán RL (1993) Disequilibrium decomposition and breakdown of muscovite in high P–T gneisses, Betic Alpine Belt (Southern Spain). Am Miner 78:158–177

    Google Scholar 

  • Garrido CJ, Bodinier JL, Alard O (2000) Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite. Earth Planet Sci Lett 181:341–358

    Article  CAS  Google Scholar 

  • Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Trommsdorff V, Alard O, Bodinier JL, Godard M (2005) Enrichment of HFSE in chlorite–harzburgite produced by high-pressure dehydration of antigorite–serpentinite: implications for subduction magmatism. Geochem Geophys Geosyst 6:Q01J15. doi:10.1029/2004GC000791

  • Gómez-Pugnaire MT, Braga JC, Martín JM, Sassi FP, Del Moro A (2000) Regional implications of a Palaeozoic age for the Nevado–Filabride Cover of the Betic Cordillera, Spain. Schweiz Miner Petrogr Mitt 80:45–52

    Google Scholar 

  • Hacker BR, Abers GA, Peacock SM (2003a) Subduction factory—1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res Solid Earth 108:art. no. 2029

    Google Scholar 

  • Hacker BR, Peacock SM, Abers GA, Holloway SD (2003b) Subduction factory —2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res Solid Earth 108:art. no. 2030

    Google Scholar 

  • Hacker BR, Sharp T, Zhang RY, Liou JG, Hervig RL (1997) Determining the origin of ultrahigh-pressure lherzolites. Science 278:702–704

    CAS  Google Scholar 

  • Holland TJB, Baker J, Powell R (1998) Mixing properties and activity-composition relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. Eur J Miner 10:395–406

    CAS  Google Scholar 

  • Holland TJB, Powell R (1996) Thermodynamics of order–disorder in minerals.2. Symmetric formalism applied to solid solutions. Am Miner 81:1425–1437

    CAS  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  CAS  Google Scholar 

  • Hürlimann R (1999) Die Hochdruckmetamorphose der Ultramafika und der angrenzenden Nebengesteine am Cerro de Almirez, Sierra Nevada, Südspanien. Teil II. Unpublished Diplomarbeit. ETH, Zürich, pp 105

  • Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212:417–432

    Article  CAS  Google Scholar 

  • Iizuka Y, Nakamura E (1995) Experimental study of the slab-mantle interaction and implications for the formation of titanoclinohumite at deep subduction zone. Proc Jpn Acad Ser B-Phys Biol Sci 71:159–164

    Google Scholar 

  • Ionov DA, Gregoire M, Prikhod’ko VS (1999) Feldspar-Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth Planet Sci Lett 165:37–44

    Article  CAS  Google Scholar 

  • Kalfoun F, Merlet C, Ionov D (2002) Determination of Nb, Ta, Zr and Hf in micro-phases at low concentrations by EPMA. Mikrochim Acta 139:83–91

    CAS  Google Scholar 

  • Kerrick D (2002) Serpentinite seduction. Science 298:1344–1345

    CAS  PubMed  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279

    Google Scholar 

  • López Sánchez-Vizcaíno V, Rubatto D, Gómez-Pugnaire MT, Trommsdorff V, Müntener O (2001) Middle Miocene high-pressure metamorphism and fast exhumation of the Nevado–Filabride Complex, SE Spain. Terra Nova 13:327–332

    Article  Google Scholar 

  • Matthes S (1971) Die ultramafischen Hornfelse, inbesondere ihre Phasenpetrologie. Fortschritte Der Mineral 48:109–127

    CAS  Google Scholar 

  • McGetchin TR, Silver LT (1970) Compositional relations in minerals from kimberlite and related rocks in the Moses Rock dike, San Juan County, Utah. Am Miner 55:1738–1771

    CAS  Google Scholar 

  • Mellini M, Trommsdorff V, Compagnoni R (1987) Antigorite polysomatism— behavior during progressive metamorphism. Contrib Mineral Petrol 97:147–155

    Article  CAS  Google Scholar 

  • Möckel JR (1969) Structural petrology of the garnet peridotite of Alpe Arami (Ticino), Switzerland. Leidse Geol Meded 42:61–130

    Google Scholar 

  • Muko A, Yoshioka N, Ogasawara Y, Zhu Y, Liou J (2001) Petrography and mineral chemistry of TiCl-bearing garnet rock from Kokchetav ultra high-pressure belt. In: UHPM workshop. Waseda University, pp 190–193

  • Nozaka T (2003) Compositional heterogeneity of olivine in thermally metamorphosed serpentinite from Southwest Japan. Am Miner 88:1377–1384

    CAS  Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29:299–302

    Google Scholar 

  • Pouchou JL, Pichoir F (1985) PAP ϕ(ρz) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press Inc., San Francisco, pp 104–106

    Google Scholar 

  • Puga E, Nieto JM, Díaz de Federico A, Bodinier JL, Morten L (1999) Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacen Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos 49:23–56

    Article  CAS  Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  CAS  PubMed  Google Scholar 

  • Reusser E, Risold AC, Günther D, Trommsdorff V (1998) Bulk Ti-content of ilmenite-bearing olivine from garnet lherzolites. EOS Trans AGU 79: F953

    Google Scholar 

  • Ribbe PH (1979) Titanium, fluorine, and hydroxyl in the humite minerals. Am Miner 64:1027–1035

    CAS  Google Scholar 

  • Risold AC (2001) Formation of oxide inclusions in olivine from garnet peridotites (Central Alps). Phd Thesis. ETH, Zürich, pp 111

  • Risold AC, Trommsdorff V, Grobety B (2001) Genesis of ilmenite rods and palisades along humite-type defects in olivine from Alpe Arami. Contrib Miner Petrol 140:619–628

    CAS  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1973) Crystal-structures of humite minerals. 4. Clinohumite and titanoclinohumite. Am Miner 58:43–49

    CAS  Google Scholar 

  • Ruiz Cruz MD, Puga E, Nieto JM (1999) Silicate and oxide exsolution in pseudo-spinifex olivine from metaultramafic rocks of the Betic Ophiolitic Association: a TEM study. Am Miner 84:1915–1924

    Google Scholar 

  • Rüpke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34

    Article  Google Scholar 

  • Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gómez-Pugnaire MT, López Sánchez-Vizcaíno V (2001a) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470

    Article  CAS  Google Scholar 

  • Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004a) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:595–613

    Google Scholar 

  • Scambelluri M, Müntener O, Hermann J, Piccardo GB, Trommsdorff V (1995) Subduction of water into the mantle—history of an Alpine Peridotite. Geology 23:459–462

    Google Scholar 

  • Scambelluri M, Müntener O, Ottolini L, Pettke T, Vannucci R (2004b) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222:217–234

    Article  CAS  Google Scholar 

  • Scambelluri M, Rampone E, Piccardo GB (2001b) Fluid and element cycling in subducted serpentinite: a trace-element study of the Erro–Tobbio high-pressure ultramafites (Western alps, NW Italy). J Petrol 42:55–67

    Article  CAS  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  CAS  Google Scholar 

  • Schönbächler M (1999) Die Hochdruckmetamorphose der Ultramafika und der angrenzenden Nebengesteine am Cerro de Almirez, Sierra Nevada, Südspanien. Teil I. Unpublished Diplomarbeit. ETH, Zürich, pp 113

  • Springer RK (1974) Contact metamorphosed ultramafic rocks in Western Sierra–Nevada Foothills, California. J Petrol 15:160–195

    CAS  Google Scholar 

  • Stalder R, Ulmer P (2001) Phase relations of a serpentine composition between 5 and 14 GPa: significance of clinohumite and phase E as water carriers into the transition zone. Contrib Mineral Petrol 140:670–679

    CAS  Google Scholar 

  • Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203

    Article  CAS  Google Scholar 

  • Sun M, Kerrich R (1995) Rare-earth element and high-field strength element characteristics of whole rocks and mineral separates of ultramafic nodules in Cenozoic volcanic vents of Southeastern British–Columbia, Canada. Geochim Cosmochim Acta 59:4863–4879

    CAS  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism of the Ocean Basins. Special Publication, vol 42. Geological Society, London, pp 313–345

  • Sykes D, Rossman GR, Veblen DR, Grew ES (1994) Enhanced H and F incorporation in borian olivine. Am Miner 79:904–908

    CAS  Google Scholar 

  • Thompson JB (1978) Biopyriboles and polysomatic series. Am Miner 63:239–249

    CAS  Google Scholar 

  • Tilley CE (1951) The zoned contact-skarns of the Broadford area, Skye: a study of boron–fluorine metasomatism in dolomites. Min Mag 29:621–673

    CAS  Google Scholar 

  • Trommsdorff V (1983) Metamorphose magnesiumreicher Gesteine: Kritischer Vergleich von Natur, Experiment und thermodynamischer Datenbasis. Fortschr Miner 61:283–308

    CAS  Google Scholar 

  • Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in the Bergell Tonalite Aureole (Italy). Am J Sci 272:423–437

    CAS  Google Scholar 

  • Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotitic rocks. Schweiz Mineral Petrogr Mitt 54:334–352

    Google Scholar 

  • Trommsdorff V, Evans BW (1980) Titanian hydroxyl-clinohumite—formation and breakdown in antigorite rocks (Malenco, Italy). Contrib Mineral Petrol 72:229–242

    CAS  Google Scholar 

  • Trommsdorff V, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Müntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Mineral Petrol 132:139–148

    Article  CAS  Google Scholar 

  • Trommsdorff V, Risold AC, Reusser E, Connolly JAD, Ulmer P (2001) Titanian clinohumite: ilmenite rod inclusions and phase relations, Central Alps. In: UHPM workshop. Waseda University, pp 84–85

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    CAS  Google Scholar 

  • Veblen DR (1991) Polysomatism and polysomatic series—a review and applications. Am Miner 76:801–826

    CAS  Google Scholar 

  • Veblen DR (1992) Electron microscopy applied to nonstoichiometry, polysomatism, and replacement reactions in minerals. In: Buseck PR (ed) Minerals and reactions at the atomic scale:TEM. Reviews in Mineralogy, vol 27. Mineralogical Society of America, Washington DC, pp 181–230

  • Wei CJ, Powell R (2003) Phase relations in high-pressure metapelites in the system KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) with application to natural rocks. Contrib Mineral Petrol 145:301–315

    CAS  Google Scholar 

  • Weiss M (1997) Clinohumites: a field and experimental study. PhD Thesis. ETH, Zurich, pp 168

  • Weiss M, Müntener O (1996) Crystal chemistry of titanian-clinohumite: implications for storage of HFSE in the mantle. In: Sixth VM (ed) Goldschmidt conference. Cambridge Publications, Heidelberg, p 665

    Google Scholar 

  • White RW, Powell R, Phillips GN (2003) A mineral equilibria study of the hydrothermal alteration in mafic greenschist facies rocks at Kalgoorlie, Western Australia. J Metamorph Geol 21:455–468

    Article  CAS  Google Scholar 

  • Wirth R, Dobrzhinetskaya LF, Green HW (2001) Electron microscope study of the reaction olivine + H2O + TiO2$ titanian clinohumite + titanian chondrodite synthesized at 8 GPa, 1300 K. Am Miner 86:601–610

    CAS  Google Scholar 

  • Wunder B, Schreyer W (1997) Antigorite: high pressure stability in the system MgO–SiO2-H2O (MSH). Lithos 41:213–227

    Article  CAS  Google Scholar 

  • Yamasaki T, Seno T (2003) Double seismic zone and dehydration embrittlement of the subducting slab. J Geophys Res Solid Earth 108:art. no. 2212

    Google Scholar 

  • Yang JJ (2003) Titanian clinohumite–gamet–pyroxene rock from the Su–Lu UHP metamorphic terrane, China: chemical evolution and tectonic implications. Lithos 70:359–379

    CAS  Google Scholar 

  • Yang JJ, Jahn BM (2000) Deep subduction of mantle-derived garnet peridotites from the Su–Lu UHP metamorphic terrane in China. J Metamorph Geol 18:167–180

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank B.W. Evans and B. Wunder for their review on this manuscript. This work is supported by the Spanish “Ministerio de Educación y Ciencia” through research grant BTE 2004-1489 and a “Ramón y Cajal” fellowship (CJG) and the “Junta de Andalucía” research groups RNM-0145 and RNM-0131. We thank Olivier Alard (The Open University) for LA-ICP-MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. López Sánchez-Vizcaíno.

Additional information

Communicated by J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

López Sánchez-Vizcaíno, V., Trommsdorff, V., Gómez-Pugnaire, M.T. et al. Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contrib Mineral Petrol 149, 627–646 (2005). https://doi.org/10.1007/s00410-005-0678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-005-0678-3

Keywords

Navigation