Skip to main content
Log in

Whittaker’s analytical dynamics: a biography

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

Originally published in 1904, Whittaker’s A Treatise on the Analytical Dynamics of Particles and Rigid Bodies soon became a classic of the subject and has remained in print for most of these 108 years. In this paper, we follow the book as it develops from a report that Whittaker wrote for the British Society for the Advancement of Science to its influence on Dirac’s version of quantum mechanics in the 1920s and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. les orbite planétaires doivent être regardées comme les ellipses dont le dimensions et les position dans l’espace, varient par dégres insensibles.

  2. l’on imagina, pour résoudre ces nouvelles équations, de considerer comme variables les constants arbitraires des intégrales relatives au mouvement elliptique. Il est remarquable que ce procédé, l’un des plus feconds de l’analyse, qui consiste à faire varier des quantités regradées d’abord comme constantes.

  3. Eccentricity, semimajor axis, inclination, longitude of the ascending node, argument of periapsis and mean anomaly at epoch.

  4. relatives à cette même théorie, que je reprends en entier sous un nouveau point de vue.

  5. Ce Mémoire contient une savant analyse qui est comme l’inverse de la mienne, et dont l’objet est d’eviter les éliminations que celle-ci exigeait.

  6. Es ist kein Lehrbuch für den Anfänger, sondern vielmehr ein reichhaltiges Kompendium, in welchem der Verf. mit grosser Sorgfalt und vielem Geschick alles verarbeitet hat, was die Forschung der besten Gelehrten bis in die jüngste Vergangenheit über den Gegenstand zutage gefördert hat.

  7. Es ist kein Lehrbuch für den Anfänger, sondern vielmehr ein reichhaltiges Kompendium, in welchem der Verf. mit großer Sorgfalt und vielem Geschick alles verarbeitet hat, was die Forschung der besten Gelehrten bis in die jüngste Vergangenheit über den Gegenstand zutage gefördert hat.

References

  • Ahmed, N., and Q.K. Ghori. 1984. Levi-Civita’s theorem for dynamical equations with constraint multipliers. Archive for Rational Mechanics and Analysis 85: 1–13.

    Google Scholar 

  • Abraham, R. 1967. Foundations of mechanics: A mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems and applications to the three-body problem, with the assistance of Jerrold E. Marsden. New York: W.A. Benjamin.

    Google Scholar 

  • Arnold, V.I. 1989. Mathematical methods of classical mechanics, 2nd ed. Berlin: Springer.

    Book  Google Scholar 

  • Arnold, V.I., V.V. Kozlov, and A.I. Neishadt. 1997. Mathematical aspects of classical and celestial mechanics, 2nd ed. Berlin: Springer.

    MATH  Google Scholar 

  • Barrow-Green, J. 2002. Whittaker and Watson’s ‘Modern Analysis’. European Mathematical Society Newsletter 45: 14–15.

    Google Scholar 

  • Barrow-Green, J. 1997. Poincaré and the three body problem. American Mathematical Society and London Mathematical Society. Providence: AMS Press.

    Google Scholar 

  • Bairstow, L.E. 1933. George Hartley Bryan. Obit Not Fell R Soc 1: 139–142.

    Article  Google Scholar 

  • Besant, W.H. 1893. A treatise on dynamics. Cambridge: Deighton Bell.

    Google Scholar 

  • Birkhoff, G.D. 1920. Review of a treatise of analytical dynamics. Bulletin of the American Mathematical Society 26: 183.

    Article  MathSciNet  Google Scholar 

  • Birkhoff, G.D. 1927. Dynamical systems. Colloquium Publications IX, American Mathematical Society (1927).

  • Bryan, G.H. 1905. Three Cambridge mathematical works. Nature 71: 601–603.

    Article  Google Scholar 

  • Bryan, G.H. 1918. Analytical dynamics. Nature 100: 363–364.

    Article  Google Scholar 

  • Burnside, W. 1897. Theory of groups of finite order. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Cartan, E. 1922. Leçons sur les Invariant Intégraux. Paris: Hermann.

    Google Scholar 

  • Cherry, T.M. 1928. Review of Birkhoff’s dynamical systems and the third edition of Whittaker’s analytical dynamics. Mathematical Gazette 195: 198–199.

    Article  Google Scholar 

  • Chorlay, R. 2011. “Local-Global”: the first twenty years. Archive for History of Exact Sciences 65: 1–66.

    Article  MATH  MathSciNet  Google Scholar 

  • Creese, M.R.S., and T.M. Creese. 2004. Ladies in the laboratory 2. New York: Scarecrow Press.

    Google Scholar 

  • Crowe, M.J. 1967. A history of vector analysis: The evolution of the idea of a vectorial system. New York: Dover.

    MATH  Google Scholar 

  • Culverwell, The discrimination of maxima and minima values of single integrals with any number of dependent variables and any continuous restrictions of the variables, the limiting values of the variables being supposed given, Proc. London Math. Soc. 23 (1892), 241–265.

  • Diliberto, S.P. 1958. Review of Carl Ludwig Siegel’s Vorlesungen über Himmelsmechanik. Bulletin of the American Mathematical Society 64: 192–196.

    Article  MathSciNet  Google Scholar 

  • Dirac, P.A.M. 1926. The fundamental equations of quantum mechanics. Proceedings of the Royal Society A 109: 642–653; also in [105, 307–320].

  • Dirac, P.A.M. 1926. Quantum mechanics and a preliminary investigation of the Hydrogen atom. Proceedings of the Royal Society A 110: 561–569; also in [105, p. 417–427].

  • Dirac, P.A.M. 1947. The principles of quantum mechanics, 3rd ed. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Fictitious problems in mathematics. Nature (72) (1905), pp. 56, 78, 102, 127 and 175.

  • GBM 1917. DR. W. H. BESANT, F.R.S. Nature 99: 310–311.

  • Geiges, H. 2001. A brief history of contact geometry and topology. Expositiones Mathematicae 19: 25–53.

    Google Scholar 

  • Goldstein, H. 1950. Classical mechanics. Reading: Addison-Wesley.

    Google Scholar 

  • Goriely, A. 2001. Integrability and nonintegrability of dynamical systems, advanced series in nonlinear dynamics, vol. 19. Singapore: World Scientific.

    Google Scholar 

  • Gray, C.G., and E.F. Taylor. 2007. When action is not least. American Journal of Physics 75: 434–458.

    Google Scholar 

  • Hamilton, W.R. 1828. Theory of systems of rays. Transactions of the Royal Irish Academy 15: 69–174.

    Google Scholar 

  • Hamilton, W.R. 1830. Supplement to an essay on the theory of systems of rays. Transactions of the Royal Irish Academy 16(part I): 1–61.

    Google Scholar 

  • Hamilton, W.R. 1831. Second supplement to an essay on the theory of systems of rays. Transactions of the Royal Irish Academy 16(part II): 93–125.

    Google Scholar 

  • Hamilton, W.R. 1837. Third supplement to an essay on the theory of systems of rays. Transactions of the Royal Irish Academy 17: 1–144.

    Google Scholar 

  • Hawkins, T. 1991. Jacobi and the birth of Lie’s theory of groups. Archive for History of Exact Sciences 42: 187–278.

    Article  MATH  MathSciNet  Google Scholar 

  • Hermann, R. 1962. Lectures on Hamilton-Jacobi-Lie theory and the calculus of variations, I, Notes. Berkeley: University of California, Berkeley.

    Google Scholar 

  • Hill, G.W. 1886. On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and the moon. Cambridge, MA: Press of John Wilson & Son; also Acta 8, 1–36 and in (Hill 1905–1907, Volume 1, pp. 243–270).

  • Hill, G.W. 1905–1907. The collected mathematical works of George William Hill. The Carnegie Institution of Washington.

  • Horneffer, K. 1988. Review of the 1988 reprint of a treatise on the analytical dynamics of particles and rigid bodies, Zentralblatt Zbl 0665.70002.

  • Hunsaker, J.C. 1916. Dynamical stability of aeroplanes. Proceedings of the National Academy of Sciences of the United States of America 2: 278–283.

    Article  Google Scholar 

  • Hunsaker, J., and S. MacLane. 1973. Edwin Bidwell Wilson (1879–1964). Biographical Memoir of the National Academy of Sciences.

  • Jacobi, C.G.J. 1837. Zur Theorie der Variationsrechnung und der Differentialgleichungen. Journal für die angewandte Mathematik 17: 68–82; also in (Jacobi 1881, Volume IV, pp. 39–55).

  • Jacobi, C.G.J. 1838. Sur le calcul des variations et sur la Thórie des équations différentielles. Journal de Mathématiques Pures et Appliquées, Série 1(3): 44–59.

    Google Scholar 

  • Jacobi, C.G.J. 2009. Vorlesungen über analytische Mechanik, second edition, edited by A. Clebsch, Georg Reimer (1866); translated as Jacobi’s Lectures on Dynamics, Hindustan Book Agency.

  • Jacobi, C.G.J. 1881. Gesammelte Werke, edited by C. W. Borchardt, E. Lottner, K. T. W. Weierstrass, 7 volumes.

  • Jordan, C. 1870. Traité des substituitions. Paris: Gauthier-Villars.

    Google Scholar 

  • Jost, R. 1964. Poisson brackets: (an unpedagogical lecture). Review of Modern Physics 36: 572–579.

    Article  Google Scholar 

  • Jourdain, E.P. 1917. Review of the first edition of “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”. Mathematical Gazette 131: 145–146.

    Article  Google Scholar 

  • Jourdain, E.P. 1917–1918. Review of the first edition of “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”. Science Progress in the Twentieth Century 12: 345.

  • Julliard-Tosel, E. 2000. Bruns’ theorem: The proof and some generalizations. Celestial Mechanics and Dynamical Astronomy 76: 241–281.

    Article  MATH  MathSciNet  Google Scholar 

  • Kline, M. 1990. Mathematical thought from ancient to modern times, vol. 2. Oxford: Oxford University Press.

    Google Scholar 

  • Kosmann-Schwarzbach, Y. 2013, La géométrie de Poisson, création du XX\({}^e\) siécle. In Siméon-Denis Poisson: Les mathématiques au service de la science, edited by Yvette Kosmann-Schwarzbach, Les Éditions de l’École polytechnique, pp. 129–172.

  • Kragh, H. 1990. Dirac: A scientific biography. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lagrange, J.-L. 1760/1761. Application de la méthode exposée dans la mémoire précédent a la solution de différents problèmes de dynamique, Miscellanea Taurinensia 2: 196–268; also in [59, t. I (1867), 365–468].

  • Lagrange, J.-L. 1808. Mémoire sur las théorie des variations des éléments des planètes et en particulier des grandes axes de leurs orbites, Mém. de l’Institute de France, also in [59, t. VI, 711–768].

  • Lagrange, J.-L. 1810. Second mémoire sur las théorie de la variation des arbitraires dans le problèmees de mécanique, dans lequel on simplifie l’application des formules générales a ces problèmes, Mém. de l’Institute de France, also in (Lagrange 1867–1892, t. VI, 809–816).

  • Lagrange, J.-L. Mécanique Analytique, quatrième édition, publié par Gaston Darboux, Gauthier-Villars t. I (1888), t. II (1889).

  • Lagrange, J.-L. 1867–1892. Oeuvres de Lagrange, Gauthier-Villars.

  • Lampe, E. 1918. Review of the first edition of “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”, Jahrbuch über die Fortschritte der Mathematik, 35.0682.01.

  • Landau, L.D., and E.M. Lifschitz. 1976. Mechanics, course o theoretical physics, vol. 1, 3rd ed. Amsterdam: Elsevier.

    Google Scholar 

  • Levi-Civita, T., and U. Amaldi. 1927. Lezioni di Meccanica Razionale, vol. II, part 2. Bologna: Nicola Zanichelli.

    Google Scholar 

  • Lie, S. 1872. Zur Theorie partieller Differentialgleichungen, Göttinger Nachrichten, 480.

  • Liebmann, H. 1914. Berührungstransformation in Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen III.D.7: 441–502.

  • Liouville, J. 1855. Note sur les équations de la Dynamique. Journal des Mathématiques Pures et Appliquées XX: 137–138.

    Google Scholar 

  • Love, A.E.H. 1929. George Hartley Bryan. Journal of London Mathematical Society Series 1(4): 238–240.

    Article  MathSciNet  Google Scholar 

  • Lützen, J. 1990. Joseph Liouville 1809–1882: master of pure and applied mathematics, Studies in the History of Mathematics and Physical Sciences, 15. Berlin: Springer.

    Google Scholar 

  • Mackey, G.W. 1963. Mathematical foundations of quantum mechanics. New York: W.A. Benjamin.

    MATH  Google Scholar 

  • Marsden, J. 1993. Steve Smale and geometric mechanics in Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer, 499–516.

  • McCrea, W.H. 1957. Edmund Taylor Whittaker. Journal of the London Mathematical Society 32: 234–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Marle, C.-M. 2009. The inception of symplectic geometry: the works of Lagrange and Poisson during the years 1808–1810. Letters in Mathematical Physics 90: 3–21.

    Article  MATH  MathSciNet  Google Scholar 

  • Martin, D. 1958. Sir Edmund Taylor Whittaker, F.R.S. Proceedings of the Edinburgh Mathematical Society (2) 11: 1–10.

    Article  MATH  Google Scholar 

  • Mathieu, É. 1874. Mémoire sur les équations différentielles canoniques de la mécanique. Journal des Mathématiques Pures et Appliquées 19: 265–306.

    Google Scholar 

  • Maxwell, J.C. 1954. A treatise on electricity and magnetism, vol. 1. New York: Dover.

    MATH  Google Scholar 

  • Philip Edward Bertrand Jourdain. Proc London Math Soc 19: 59–60 (1921).

    Google Scholar 

  • Poincaré, H. Mémoire sur les fonctions zétafuchsiennes. Acta Mathematica IV (1884), 211–278; also in (Poincaré 1916–1954, Volume 2, pp. 402–462).

  • Poincaré, H. 1890. Sur le problème des trois corps et les équations de la dynamique. Acta 13 1–270 also in (Poincaré 1916–1954, Volume VII, 262–479).

    Google Scholar 

  • Poincaré, H. 1899. Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, t. I (1892), t. II (1893), t. III (1899).

  • Poincaré, H. 1910. Leçons de mécanique céleste : professées à la Sorbonne, Gauthier-Villars t. I (1905), t. II partie 1 (1907), t. II partie 2 (1909), t. III (1910).

  • Poincaré, H. 1916–1954. Oeuvres de Henri Poincaré, 12 volumes, Gauthier-Villars.

  • Poisson, S.-D. 1809. Sur la variation des constants arbitraires dans le question de Mécanique. Journal de l’Ecole Polytechnique, 15éme cahier VIII: 266–344.

    Google Scholar 

  • Prange, G. 1935. Die Allgemeinen Integrationsmethoden der Analytischen Mechanik, Encyklopädie der Mathematischen Wissenschaften IV.12.U13, 505–804.

  • Pulte, H. 2005. Joseph Louis Lagrange, Méchanique Analitique, First Edition (1788), in Landmark Writings in Western Mathematics 1640–1940, edited by I. Grattan-Guiness, Elsevier.

  • Reeb, G. 1952. Sur certaines propriétés topologiques des trajectoires des systémes dynamiques, Acad. Roy. Belgique, Cl. Sci., Mém., Coll. 8\(^\circ \) 27(9), 64 S.

  • Routh, E.J. 1860. An elementary treatise on the dynamics of a system of rigid bodies: With numerous examples. London: MacMillan.

    Google Scholar 

  • Routh, E.J. 1882. The elementary part of a treatise on the dynamics of a system of rigid bodies, being part I of a treatise on the whole subject. London: MacMillan.

    Google Scholar 

  • Routh, E.J. 1884. The advanced part of a treatise on the dynamics of a system of rigid bodies, being part II of a treatise on the whole subject. London: MacMillan.

    Google Scholar 

  • Routh, E.J. 1891. A treatise on analytic statics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Routh, E.J. 1898. A treatise on dynamics of a particle with numerous examples. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Siegel, C.L. 1943. Symplectic geometry. American Journal of Mathematics 65: 1–86.

    Article  MathSciNet  Google Scholar 

  • Siegel, C.L. 1956. Vorlesungen über Himmelsmechanik. Berlin: Springer.

    Book  Google Scholar 

  • Siegel, C.L., and J. Moser. 1971. Lectures on celestial mechanics, translation by Charles I. Kalme. Berlin: Springer.

    Book  Google Scholar 

  • Smale, S. 1967. Differentiable dynamical systems. Bulletin of the American Mathematical Society 73: 747–817.

    Article  MATH  MathSciNet  Google Scholar 

  • Sneddon, I.N. 1980. Review of “Mathematical methods of classical mechanics” and “A course of mathematical physics, vol. 1: Classical dynamical systems”. Bulletin of the American Mathematical Society (N.S.) 2: 346–352.

    Article  MathSciNet  Google Scholar 

  • Souriau, J.M. 1970. Structure des systèmes dynamiques. Paris: Dunod.

    MATH  Google Scholar 

  • Sommerfeld, A. 1921. Atombau und Spektrallinien, 2nd ed. Braunschweig: Friedr. Vieweg & Sohn.

    Google Scholar 

  • Sternberg, S. 1964. Lectures on differential geometry. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Sternberg, S. 1980. Review of Ralph Abraham and Jerrold E. Marsden, “Foundations of mechanics”. Bulletin of the American Mathematical Society (N.S.) 2: 378–387.

    Article  MathSciNet  Google Scholar 

  • Temple, G. 1956. Edmund Taylor Whittaker. Biographical memoirs of fellows of the royal society 2: 299–325.

  • Thirring, W. 1978. A course of mathematical physics, vol. 1, translated by Evans M. Harrel. Berlin: Springer.

  • Todhunter, I. 1962. A history of the calculus of variations during the nineteenth century. Berlin: Chelsea.

    Google Scholar 

  • Truesdell, C. 1984. An idiot’s fugitive essays on science. Berlin: Springer.

    Book  MATH  Google Scholar 

  • van Kampen, E.R., and A. Wintner. 1936. On the canonical transformations of Hamiltonian systems. American Journal of Mathematics 58: 851–863.

    Article  MATH  MathSciNet  Google Scholar 

  • van der Waerden, B.L. 1967. Sources of quantum mechanics. New York: Dover.

    MATH  Google Scholar 

  • Verhulst, F. 2012. Henri Poincaré: impatient genius. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Warwick, A. 2003. Masters of theory: Cambridge and the rise of mathematical theory, Chicago.

  • Watson, G.N., and E.T. Whittaker. 1963. A course of modern analysis, 4th ed. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Weyl, H. 1939. The classical groups. Englewood Cliffs: Princeton.

    Google Scholar 

  • Whittaker, E.T. 1900. Report on the progress of the solution of the problem of three bodies, in Report of the Sixty-Ninth Meeting of the British Association for the Advancement of Science held at Dover in September 1899, John Murray.

  • Whittaker, E.T. 1902. On the solution of dynamical problems in terms of trigonometric series. Proceedings of the London Mathematical Society 34: 206–221.

    MATH  MathSciNet  Google Scholar 

  • Whittaker, E.T. 1940. The Hamiltonian revival. The Mathematical Gazette 24(260): 153–158.

    Article  Google Scholar 

  • Whittaker, E.T. 1904. A treatise on the analytical dynamics of particles and rigid bodies, 1st ed. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Whittaker, E.T. 1910. A history of the theories of aether and electricity from the age of Descartes to the close of the nineteenth century. London: Longmans.

    MATH  Google Scholar 

  • Whittaker, E.T. 1917. A treatise on the analytical dynamics of particles and rigid bodies, 2nd edn. Cambridge: Cambridge University Press. Reprinted by Pranava Books (2008).

  • Whittaker, E.T. 1999. A treatise on the analytical dynamics of particles and rigid bodies, reprint of the fourth edition with a forward by W. H. McCrea, Cambridge University Press, Cambridge.

  • Whittaker, E.T. 1916–1917. On the Adelphic integral of the differential equations of dynamics. Proceedings of the Royal Society of Edinburgh 37: 95–116.

  • Whittaker, E.T. 1951. A history of the theories of aether and electricity: The classical theories. London: Nelson.

    MATH  Google Scholar 

  • Whittaker, E.T. 1953. A history of the theories of aether and electricity: The modern theories 1900–1926. London: Nelson.

    MATH  Google Scholar 

  • Wilson, E.B. 1901. Vector analysis: A text-book for the use of students of Mathematics and Physics founded upon the lectures of J. Willard Gibbs. New York: Charles Scribner’s Sons.

    Google Scholar 

  • Wilson, E.B. 1906. Review of the first edition of “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”. Bulletin of the American Mathematical Society 12: 451–458.

    Article  MathSciNet  Google Scholar 

  • Wintner, A. 1934. On the linear conservative dynamical systems. Annali di Matematica Seria IV 13: 14–112.

    MathSciNet  Google Scholar 

  • Wintner, A. 1941. The analytical foundations of celestial mechanics. Englewood Cliffs: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Coutinho.

Additional information

Communicated by : Jeremy Gray.

This paper was made possible by the Internet Archive, the Gallica site of the Bibliothèque nationale de France, Project Euclid, the American Mathematical Society and the Jahrbuch Database of the European Mathematical Society, where many of the books and papers we mention can be downloaded at no cost. I would like to thank Antonio Roberto da Silva for his help with the translations from the German, Jeremy Gray for his many suggestions and R. Abraham, H. Bursztyn, J. Koiler, Y. Kosmann-Schwarzbach, S. Sternberg and A. Weinstein for their help in clarifying the history of the geometric approach to mechanics. The work on this paper was partially supported by a grant from the Brazilian National Research Council (CNPq).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coutinho, S.C. Whittaker’s analytical dynamics: a biography. Arch. Hist. Exact Sci. 68, 355–407 (2014). https://doi.org/10.1007/s00407-013-0133-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-013-0133-1

Keywords

Navigation