Skip to main content

Advertisement

Log in

DNA methylation and inflammatory skin diseases

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Epigenetics is the study of heritable changes in gene expression that do not originate from alternations in the DNA sequence. Epigenetic modifications include DNA methylation, histone modification, and gene silencing via the action of microRNAs. Epigenetic dysregulation has been implicated in many disease processes. In the field of dermatology, epigenetic regulation has been extensively explored as a pathologic mechanism in cutaneous T-cell lymphoma (CTCL), which has led to the successful development of epigenetic therapies for CTCL. In recent years, the potential role of epigenetic regulation in the pathogeneses of inflammatory skin diseases has gained greater appreciation. In particular, epigenetic changes in psoriasis and atopic dermatitis have been increasingly studied, with DNA methylation the most rigorously investigated to date. In this review, we provide an overview of DNA methylation in inflammatory skin diseases with an emphasis on psoriasis and atopic dermatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waddington CH (2012) The epigenotype. Int J Epidemiol 41(1):10–13

    CAS  PubMed  Google Scholar 

  2. Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17(3):330–339

    PubMed  Google Scholar 

  3. Berger SL, Kouzarides T, Shiekhattar R et al (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Feinberg AP, Koldobskiy MA, Göndör A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17(5):284–299

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    CAS  PubMed  Google Scholar 

  6. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517–534

    CAS  PubMed  Google Scholar 

  7. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298

    CAS  PubMed  Google Scholar 

  8. Feinberg (2018) The key role of epigenetics in human disease. N Engl J Med 379(4):400–401

    PubMed  Google Scholar 

  9. Li Y, Sawalha AH, Lu Q (2009) Aberrant DNA methylation in skin diseases. J Dermatol Sci 54(3):143–149

    CAS  PubMed  Google Scholar 

  10. Shanmugam MK, Sethi G (2013) Role of epigenetics in inflammation-associated diseases. Subcell Biochem 61:627–657

    CAS  PubMed  Google Scholar 

  11. Jeltsch A, Jurkowska RZ (2014) New concepts in DNA methylation. Trends Biochem Sci 39(7):310–318

    CAS  PubMed  Google Scholar 

  12. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610

    CAS  PubMed  Google Scholar 

  13. Boehncke WH, Schön MP (2015) Psoriasis. Lancet 386:983–994

    CAS  PubMed  Google Scholar 

  14. Grozdev I, Korman N, Tsankov N (2014) Psoriasis as a systemic disease. Clin Dermatol 32(3):343–350

    PubMed  Google Scholar 

  15. Gladman DD, Antoni C, Mease P et al (2005) Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann Rheum Dis 64(Suppl 2:ii1):4–7

    Google Scholar 

  16. Lu Q (2013) The critical importance of epigenetics in autoimmunity. J Autoimmun 41:1–5

    PubMed  Google Scholar 

  17. Wang Z, Long H, Chang C, Zhao M, Lu Q (2018) Crosstalk between metabolism and epigenetic modifications in autoimmune diseases: a comprehensive overview. Cell Mol Life Sci 75(18):3353–3369

    CAS  PubMed  Google Scholar 

  18. Zhao M, Lu Q (2018) The aberrant epigenetic modifications in the pathogenesis of psoriasis. J Investig Dermatol Symp Proc 19(2):S81–S82.

    PubMed  Google Scholar 

  19. Pollock RA, Abji F, Gladman DD (2017) Epigenetics of psoriatic disease: A systematic review and critical appraisal. J Autoimmun. 78:29–38

    CAS  PubMed  Google Scholar 

  20. Traupe H, van Gurp PJ, Happle R et al (1992) Psoriasis vulgaris, fetal growth, and genomic imprinting. Am J Med Genet 42(5):649–654

    CAS  PubMed  Google Scholar 

  21. Generali E, Ceribelli A, Stazi MA et al (2017) Lessons learned from twins in autoimmune and chronic inflammatory diseases. J Autoimmun 83:51–61

    CAS  PubMed  Google Scholar 

  22. Xiang Z, Yang Y, Chang C, Lu Q (2017) The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J Autoimmun 1(83):43–50

    Google Scholar 

  23. Zhang P, Su Y, Chen H et al (2010) Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J Dermatol Sci 60(1):40–42

    CAS  PubMed  Google Scholar 

  24. Yooyongsatit S, Ruchusatsawat K, Noppakun N et al (2015) Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J Hum Genet 60(7):349–355

    CAS  PubMed  Google Scholar 

  25. Murata Y, Bundo M, Ueda J et al (2017) DNA methylation and hydroxymethylation analyses of the active LINE-1 subfamilies in mice. Sci Rep 7(1):13624

    PubMed  PubMed Central  Google Scholar 

  26. Roberson ED, Liu Y, Ryan C et al (2012) A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol. 132(3):583–592

    CAS  PubMed  Google Scholar 

  27. Verma D, Ekman AK, Bivik Eding C et al (2018) Genome-wide DNA methylation profiling identifies differential methylation in uninvolved psoriatic epidermis. J Invest Dermatol 138(5):1088–1093

    CAS  PubMed  Google Scholar 

  28. Zhang P, Zhao M, Liang G et al (2013) Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. J Autoimmun 41:17–24

    PubMed  Google Scholar 

  29. Zhou F, Wang W, Shen C et al (2016) Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis. J Invest Dermatol 136(4):779–787

    CAS  PubMed  Google Scholar 

  30. Tang L, Cheng Y, Zhu C et al (2018) Integrative methylome and transcriptome analysis to dissect key biological pathways for psoriasis in Chinese Han population. J Dermatol Sci 91(3):285–291

    CAS  PubMed  Google Scholar 

  31. Chen M, Chen ZQ, Cui PG et al (2008) The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance. Br J Dermatol 158(5):987–993

    CAS  PubMed  Google Scholar 

  32. Chen M, Wang Y, Yao X et al (2016) Hypermethylation of HLA-C may be an epigenetic marker in psoriasis. J Dermatol Sci. 83(1):10–16

    CAS  PubMed  Google Scholar 

  33. Chandra A, Senapati S, Roy S et al (2018) Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin Epigenetics 10(1):108

    PubMed  PubMed Central  Google Scholar 

  34. Gervin K, Vigeland MD, Mattingsdal M et al (2012) DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet 8(1):e1002454

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Han J, Park SG, Bae JB et al (2012) The characteristics of genome-wide DNA methylation in naïve CD4+ T cells of patients with psoriasis or atopic dermatitis. Biochem Biophys Res Commun 422(1):157–163

    CAS  PubMed  Google Scholar 

  36. Park GT, Han J, Park SG et al (2014) DNA methylation analysis of CD4+ T cells in patients with psoriasis. Arch Dermatol Res. 306(3):259–268

    CAS  PubMed  Google Scholar 

  37. Gu X, Nylander E, Coates PJ et al (2015) Correlation between reversal of DNA methylation and clinical symptoms in psoriatic epidermis following narrow-band UVB phototherapy. J Invest Dermatol 135(8):2077–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bieber T (2008) Atopic dermatitis. N Engl J Med 358(14):1483–1494

    CAS  PubMed  Google Scholar 

  39. Liang Y, Chang C, Lu Q (2016) The genetics and epigenetics of atopic dermatitis—filaggrin and other polymorphisms. Clin Rev Allergy Immunol 51(3):315–328

    CAS  PubMed  Google Scholar 

  40. Lockett GA, Soto-Ramírez N, Ray MA et al (2016) Association of season of birth with DNA methylation and allergic disease. Allergy 71(9):1314–1324

    CAS  PubMed  Google Scholar 

  41. Wang IJ, Chen SL, Lu TP et al (2013) Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy 43(5):535–543

    CAS  PubMed  Google Scholar 

  42. Nguyen CM, Liao W (2015) Genomic imprinting in psoriasis and atopic dermatitis: a review. J Dermatol Sci 80(2):89–93

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakamura T, Sekigawa I, Ogasawara H et al (2006) Expression of DNMT-1 in patients with atopic dermatitis. Arch Dermatol Res 298(5):253–256

    CAS  PubMed  Google Scholar 

  44. Novak N, Bieber T, Leung DY (2003) Immune mechanisms leading to atopic dermatitis. J Allergy Clin Immunol. 112(6 Suppl):S128–S139

    CAS  PubMed  Google Scholar 

  45. Luo Y, Zhou B, Zhao M et al (2014) Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol 39(1):48–53

    CAS  PubMed  Google Scholar 

  46. Ziyab AH, Karmaus W, Holloway JW et al (2013) DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol 27(3):e420–e423

    CAS  PubMed  Google Scholar 

  47. Rodríguez E, Baurecht H, Wahn AF et al (2014) An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis. J Invest Dermatol 134(7):1873–1883

    PubMed  Google Scholar 

  48. Leoni C, Montagner S, Rinaldi A et al (2017) DNMT3a restrains mast cell inflammatory responses. Proc Natl Acad Sci USA 114(8):E1490–E1499

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Leoni C, Montagner S, Deho' L et al (2015) Reduced DNA methylation and hydroxymethylation in patients with systemic mastocytosis. Eur J Haematol 95(6):566–575

    CAS  PubMed  Google Scholar 

  50. Shukla A, Sehgal M, Singh TR (2015) Hydroxymethylation and its potential implication in DNA repair system: a review and future perspectives. Gene 564(2):109–118

    CAS  PubMed  Google Scholar 

  51. Hessam S, Sand M, Lang K et al (2017) Altered global 5-hydroxymethylation status in hidradenitis suppurativa: support for an epigenetic background. Dermatology 233(2–3):129–135

    CAS  PubMed  Google Scholar 

  52. Cruz AF, de Resende RG, de Lacerda JCT et al (2018) DNA methylation patterns of genes related to immune response in the different clinical forms of oral lichen planus. J Oral Pathol Med. 47(1):91–95

    CAS  PubMed  Google Scholar 

  53. Mervis JS, McGee JS (2019) Epigenetic therapy and dermatologic disease: moving beyond CTCL. J Dermatolog Treat 30(1):68–73

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors received no funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean S. McGee.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent not required for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mervis, J.S., McGee, J.S. DNA methylation and inflammatory skin diseases. Arch Dermatol Res 312, 461–466 (2020). https://doi.org/10.1007/s00403-019-02005-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-019-02005-9

Keywords

Navigation