Skip to main content

Advertisement

Log in

Amyloid-β may be released from non-junctional varicosities of axons generated from abnormal tau-containing brainstem nuclei in sporadic Alzheimer’s disease: a hypothesis

  • Correspondence
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Agnati LF, Bjelke B, Fuxe K (1995) Volume versus wiring transmission in the brain: a new theoretical frame of neuropsychopharmacology. Med Res Rev 15:33–45

    Article  PubMed  CAS  Google Scholar 

  2. Beach TG, Sue LI, Walker DG et al (2012) Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer’s disease: implications for amyloid imaging. J Alzheimers Dis 28:869–876

    PubMed  CAS  Google Scholar 

  3. Blennow K, Zetterberg H, Fagan AM (2012) Fluid biomarkers in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006221

    Article  PubMed  Google Scholar 

  4. Braak H, Braak E (1990) Alzheimer’s disease: amyloid deposits and neurofibrillary changes in the striatum. J Neuropathol Exp Neurol 49:215–224

    Article  PubMed  CAS  Google Scholar 

  5. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  6. Braak H, Del Tredici K (2004) Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-β formation. Neurobiol Aging 25:713–718

    Article  PubMed  Google Scholar 

  7. Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181

    Article  PubMed  Google Scholar 

  8. Braak H, Del Tredici K (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 25:708–714

    Article  PubMed  CAS  Google Scholar 

  9. Braak H, Braak E, Bohl J et al (1989) Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol Sci 93:277–287

    Article  PubMed  CAS  Google Scholar 

  10. Braak H, Thal DR, Ghebremedhin E et al (2011) Stages of the pathological process in Alzheimer’ disease. J Neuropathol Exp Neurol 70:960–969

    Article  PubMed  CAS  Google Scholar 

  11. Braak H, Zetterberg H, Del Tredici K, Blennow K (2013) Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol. doi:10.1007/s00401-013-1139-0

  12. Busch C, Bohl J, Ohm TG (1997) Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 18:401–406

    Article  PubMed  CAS  Google Scholar 

  13. Cohen Z, Molinatti G, Hamel E (1997) Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 17:894–904

    Article  PubMed  CAS  Google Scholar 

  14. Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer’s disease. Acta Neuropathol 118:5–36

    Article  PubMed  CAS  Google Scholar 

  15. Elobeid A, Soininen H, Alafuzoff I (2012) Hyperphosphorylated tau in young and middle-aged subjects. Acta Neuropathol 123:97–104

    Article  PubMed  CAS  Google Scholar 

  16. German DC, White CL, Sparkman DR (1987) Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neurosci 21:305–312

    Article  CAS  Google Scholar 

  17. Goedert M, Klug A, Crowther RA (2006) Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 9(Suppl):195–207

    PubMed  CAS  Google Scholar 

  18. Grinberg LT, Rüb U, Ferretti REL et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416

    Article  PubMed  CAS  Google Scholar 

  19. Grinberg LT, Korczyn AD, Heinsen H (2012) Cerebral amyloid angiopathy impact on endothelium. Exp Gerontol 47:838–842

    Article  PubMed  Google Scholar 

  20. Grudzien A, Shaw P, Weintraub S et al (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335

    Article  PubMed  CAS  Google Scholar 

  21. Grundke-Iqbal I, Iqbal K, Tung Y et al (1986) Abnormal phosphorylation of the microtubule-associated proteinτ (tau) in Alzheimer cytoskeletal pathology. Proc Nat Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  22. Haass C, Kaether C, Thinakaran G et al (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270

    Article  PubMed  Google Scholar 

  23. Haglund M, Sjöbeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26:528–532

    Article  PubMed  Google Scholar 

  24. Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13

    Article  PubMed  Google Scholar 

  25. Iqbal K, Grundke-Iqbal I (2008) Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 12:38–55

    Article  PubMed  CAS  Google Scholar 

  26. Iqbal K, Alonso AC, Gong CX et al (1994) Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Mol Neurobiol 9:119–123

    Article  PubMed  CAS  Google Scholar 

  27. Iqbal K, Liu F, Gong CX et al (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69

    Article  PubMed  CAS  Google Scholar 

  28. Iseki E, Matsushita M, Kosaka K et al (1989) Distribution and morphology of brain stem plaques in Alzheimer’s disease. Acta Neuropathol 78:131–136

    Article  PubMed  CAS  Google Scholar 

  29. Kovács T, Cairns NJ, Lantos PL (1999) β-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491

    Article  PubMed  Google Scholar 

  30. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    Article  PubMed  Google Scholar 

  31. Mandelkow E, von Bergen M, Biernat J et al (2007) Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 17:83–90

    Article  PubMed  CAS  Google Scholar 

  32. Masters CL, Beyreuther K (2006) Pathways to the discovery of the neuronal origin and proteolytic biogenesis of Aβ amyloid of Alzheimer’s disease. In: Alzheimer: 100 years and beyond. Springer, Berlin, pp 143–149

  33. Masters CL, Selkow DJ (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer’s disease. Cold Spring Harb Perspect Med 2:a006262

    Article  PubMed  Google Scholar 

  34. Mesulam MM, Shaw P, Mash D et al (2004) Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 55:815–828

    Article  PubMed  CAS  Google Scholar 

  35. Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  PubMed  CAS  Google Scholar 

  36. Nelson PT, Jicha GA, Schmitt FA et al (2007) Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J Neuropathol Exp Neurol 66:1136–1146

    Article  PubMed  Google Scholar 

  37. Nelson PT, Head E, Schmitt FA et al (2011) Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol 121:571–587

    Article  PubMed  Google Scholar 

  38. O’Donnell J, Zeppenfeld D, McConnell E et al (2012) Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res 37:2496–2512

    Article  PubMed  Google Scholar 

  39. Parvizi J, Van Hoesen GW, Damasio A (2001) The selective vulnerability of brainstem nuclei to Alzheimer’s disease. Ann Neurol 49:53–66

    Article  PubMed  CAS  Google Scholar 

  40. Rüb U, Del Tredici K, Schultz C et al (2000) The evolution of Alzheimer’s disease-related cytoskeletal pathology in the human raphe nuclei. Neuropathol Appl Neurobiol 26:553–557

    Article  PubMed  Google Scholar 

  41. Sassin I, Schultz C, Thal DR et al (2000) Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol 100:259–269

    Article  PubMed  CAS  Google Scholar 

  42. Schönheit B, Zarski R, Ohm TG (2004) Spatial and temporal relationship between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 25:697–711

    Article  PubMed  Google Scholar 

  43. Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53:438–447

    Article  PubMed  CAS  Google Scholar 

  44. Serrano-Pozo A, Frosch M, Masliah E et al (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189

    Article  PubMed  Google Scholar 

  45. Simic G, Stanic G, Mladinov M et al (2009) Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol 35:532–554

    Article  PubMed  CAS  Google Scholar 

  46. Thal DR, Rüb U, Schultz C et al (2000) Sequence of Aβ-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748

    PubMed  CAS  Google Scholar 

  47. Thal DR, Rüb U, Orantes M et al (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  48. Vana L, Kanaan NM, Ugwu IC et al (2011) Progression of tau pathology in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. Am J Pathol 179:2533–2550

    Article  PubMed  CAS  Google Scholar 

  49. Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5:342–345

    Article  PubMed  CAS  Google Scholar 

  50. Yamada M, Naiki H (2012) Cerebral amyloid angiopathy. Prog Mol Biol Transl Sci 107:41–78

    Article  PubMed  CAS  Google Scholar 

  51. Yoshiyama Y, Lee VMY, Trojanowski JQ (2013) Therapeutic strategies for tau mediated neurodegeneration. J Neurol Neurosurg Psychiatry 84:784–795

    Article  PubMed  Google Scholar 

  52. Zweig RM, Ross CA, Hedreen JC et al (1988) The neuropathology of aminergic nuclei in Alzheimer’s disease. Ann Neurol 24:233–242

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Braak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braak, H., Del Tredici, K. Amyloid-β may be released from non-junctional varicosities of axons generated from abnormal tau-containing brainstem nuclei in sporadic Alzheimer’s disease: a hypothesis. Acta Neuropathol 126, 303–306 (2013). https://doi.org/10.1007/s00401-013-1153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1153-2

Keywords

Navigation