Skip to main content

Advertisement

Log in

Hyperphosphorylated tau aggregates in the cortex and hippocampus of transgenic mice with mutant human FTDP-17 Tau and lacking the PARK2 gene

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Mutations in the PARK2 gene encoding parkin cause autosomal recessive juvenile parkinsonism, but have also been found in patients diagnosed with certain tauopathies. Conversely, mutations in the MAPT gene encoding tau are present in some types of parkinsonism. In order to investigate the possible relationship between these two proteins, we generated a double mutant mouse that is deficient in PARK2 and that over-expresses the hTauVLW transgene, a mutant form of the tau protein present in FTDP-17. Independent deletion of PARK2 or over-expression of the hTauVLW transgene produces mild phenotypic alterations, while a substantial increase in parkin expression is observed in hTauVLW transgenic mice. However, double mutant mice present memory and exploratory deficits, and accumulation of PHF-1 and AT8 hyperphosphorylated tau epitopes in neurons. These phenomena are coupled with reactive astrocytosis, DNA fragmentation, and variable cerebral atrophy. Here, we show that cortical and hippocampal neurons of double mutant mice develop argyrophilic Gallyas-Braak aggregates of phosphorylated tau from 3 months of age. Their number decreases in old animals. Moreover, numerous phosphorylated tau aggregates were identified with the conformation-dependent Alz-50 antibody and the S-Thioflavin staining. Ventral motor nuclei of the spinal cord also present Alz-50, AT8, and PHF1 hyperphosphorylated tau aggregates when parkin is deleted in mice over-expressing the hTauVLW transgene, begining at early ages. Thus, the combination of PARK2 gene deletion with hTauVLW over-expression in mice produces abnormal hyperphosphorylated tau aggregates, similar to those observed in the brain of patients diagnosed with certain tauopathies. In the light of these changes, these mice may help to understand the molecular processes responsible for these diseases, and they may aid the development of new therapeutic strategies to treat neurodegenerative diseases related to tau and parkin proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbas N, Lucking CB, Ricard S et al (1999) A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson’s Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson’s Disease. Hum Mol Genet 8:567–574

    Article  PubMed  CAS  Google Scholar 

  2. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 98:6923–6928

    Article  PubMed  CAS  Google Scholar 

  3. Braak H, Braak E, Ohm T, Bohl J (1988) Silver impregnation of Alzheimer’s neurofibrillary changes counterstained for basophilic material and lipofuscin pigment. Stain Technol 634:197–200

    Google Scholar 

  4. Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:1089–1099

    Article  PubMed  CAS  Google Scholar 

  5. Engel T, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J, Hernandez F (2006) Co-expression of FTDP-17 tau and GSK-3β in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging 27:1258–1268

    Article  PubMed  CAS  Google Scholar 

  6. Feany MB, Dickson DW (1996) Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 40:139–148

    Article  PubMed  CAS  Google Scholar 

  7. Gallyas F (1971) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19:1–8

    PubMed  CAS  Google Scholar 

  8. Goedert M, Spillantini MG, Jakes R (1991) Localization of the Alz-50 epitope in recombinant human microtubule-associated protein tau. Neurosci Lett 126:149–154

    Article  PubMed  CAS  Google Scholar 

  9. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168

    Article  PubMed  CAS  Google Scholar 

  10. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Nat Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  11. Guerrero R, Navarro P, Gallego E, Avila J, García de Yébenes J, Sanchez MP (2008) Park2-null/tau transgenic mice reveal a functional relationship between parkin and tau. J Alz Dis 13:161–172

    Article  CAS  Google Scholar 

  12. Hattori N, Kitada T, Matsumine H et al (1998) Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol 44:935–941

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi S, Wakabayashi K, Ishikawa A et al (2000) An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord 15:884–888

    Article  PubMed  CAS  Google Scholar 

  14. Hutton M, Lendon CL, Rizzu P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  PubMed  CAS  Google Scholar 

  15. Iqbal K, Grundke-Iqbal I (2006) Discoveries of Tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: a personal historical perspective. J Alz Dis 9:219–242

    CAS  Google Scholar 

  16. Itier JM, Ibanez P, Mena MA et al (2003) Parkin gene inactivation alters behavior and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–2291

    Article  PubMed  CAS  Google Scholar 

  17. Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  18. Klein RL, Dayton RD, Henderson KM, Petrucelli L (2006) Parkin is protective for substantia nigra dopamine neurons in a tau gene transfer neurodegeneration model. Neurosci Lett 401:130–135

    Article  PubMed  CAS  Google Scholar 

  19. Layfield R, Cavey JR, Lowe J (2003) Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders. Ageing Res Rev 2:343–356

    Article  PubMed  CAS  Google Scholar 

  20. Leroy E, Anastasopoulos D, Konitsiotis S, Laveda C, Polymeropoulos MH (1998) Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson’s disease. Hum Genet 103:424–427

    Article  PubMed  CAS  Google Scholar 

  21. Lim F, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J (2001) FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and Tau filaments in forebrain. Mol Cell Neurosci 8:702–714

    Article  CAS  Google Scholar 

  22. Markopoulou K, Dickson DW, McComb RD, Wszolek ZK, Katechalidou L, Avery L, Stansbury MS, Chase BA (2008) Clinical, neuropatological and genotypic variability in SNCA A53T familial Parkinson’s disease. Variability in familial Parkinson’s disease. Acta Neuropathol 116:25–35

    Article  PubMed  CAS  Google Scholar 

  23. Matsumine H, Saito M, Shimoda-Matsubayashi S (1997) Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2–27. Am J Hum Genet 60:588–596

    PubMed  CAS  Google Scholar 

  24. Menendez J, Rodriguez-Navarro JA, Solano RM et al (2006) Suppression of Parkin enhances nigrostriatal and motor neuron lesion in mice over-expressing human-mutated tau protein. Hum Mol Genet 15:2045–2058

    Article  PubMed  CAS  Google Scholar 

  25. Morales B, Martinez A, Gonzalo I et al (2002) Steele-Richardson-Olszewski syndrome in a patient with a single C212Y mutation in the parkin protein. Mov Disord 7:1374–1380

    Article  Google Scholar 

  26. Mori H, Kondo T, Yokochi M (1998) Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology 51:890–892

    PubMed  CAS  Google Scholar 

  27. Moussa CE (2008) Parkin Attenuates Wild-Type tau Modification in the Presence of beta-Amyloid and alpha-Synuclein. J Mol Neurosci, 2008 Jun 17 (Epub ahead of print)

  28. Navarro P, Guerrero R, Gallego E, Ávila J, Luquin R, García Ruíz PJ, Sánchez MP (2008) Memory and exploratory impairment in mice that lack the Park-2 gene and that over-express the human FTDP-17 mutant Tau. Behav Brain Res 189:350–356

    Article  PubMed  CAS  Google Scholar 

  29. Navarro P, Guerrero R, Gallego E, Ávila J, Luquin R, García Ruíz PJ, Sánchez MP (2008) Motor alterations are reduced in mice lacking the PARK2 gene in the presence of a human FTDP-17 mutant form of four-repeat tau. J Neurol Sci 275:139–144

    Article  PubMed  CAS  Google Scholar 

  30. O’Callaghan JP, Jensen KF (1992) Enhanced expression of glial fibrillary acidic protein and the cupric silver degeneration reaction can be used as sensitive and early indicators of neurotoxicity. Neurotoxicol 13:113–122

    CAS  Google Scholar 

  31. Petrucelli LK, Lockhart P (2002) Tau is a parkin substrate; implications for neurodegenerative disease. Mov Disord 17:S156

    Article  Google Scholar 

  32. Petrucelli L, Dickson D, Kehoe K et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714

    Article  PubMed  CAS  Google Scholar 

  33. Poorkaj P, Bird TD, Wijsman E (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43:815–825

    Article  PubMed  CAS  Google Scholar 

  34. Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 23:3316–3324

    PubMed  CAS  Google Scholar 

  35. Sahara N, Murayama M, Mizoroki T et al (2005) In vivo evidence of CHIP up-regulation attenuating tau aggregation. J Neurochem 94:1254–1263

    Article  PubMed  CAS  Google Scholar 

  36. Sánchez MP, Gonzalo I, Avila J, García de Yébenes J (2002) Progressive supranuclear palsy and tau hyperphosphorylation in a patient with a C212Y parkin mutation. J Alz Dis 4:399–404

    Google Scholar 

  37. Shimura H, Hattori N, Kubo S (2000) Familial Parkinson disease gene product, parkin, is an ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  PubMed  CAS  Google Scholar 

  38. Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876

    Article  PubMed  CAS  Google Scholar 

  39. Spillantini MG (2001) Tau and Parkinson disease. JAMA 286:2324–2326

    Article  PubMed  CAS  Google Scholar 

  40. Spillantini MG, Bird TD, Ghetti B (1998) Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 8:387–402

    Article  PubMed  CAS  Google Scholar 

  41. Stanford PM, Brooks WS, Teber ET (2004) Frequency of tau mutations in familial and sporadic frontotemporal dementia and other tauopathies. J Neurol 251:1098–1104

    Article  PubMed  CAS  Google Scholar 

  42. van De Warrenburg BP, Lammens M, Lucking CB (2001) Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology 56:555–557

    PubMed  Google Scholar 

  43. van Leeuwen FW, Hol EM, Fischer DF (2006) Frameshift proteins in Alzheimer’s disease and in other conformational disorders: Time for the ubiquitin-proteasome system. J Alz Dis 9:319–325

    Google Scholar 

  44. von Coelln R, Dawson VL, Dawson TM (2004) Parkin-associated Parkinson’s disease. Cell Tissue Res 318:175–184

    Article  CAS  Google Scholar 

  45. West A, Lincoln S, Lucking CB et al (2002) French. Parkinson’s Disease Genetics Study Group and the European Consortium on Genetic Susceptibility on Parkinson’s Disease. Complex relationship between Parkin mutations and Parkinson disease. Am J Med Genet 114:584–591

    Article  PubMed  Google Scholar 

  46. Wolozin BL, Pruchnicki A, Dickson DB, Davies P (1986) A neuronal antigen in the brains of Alzheimer patients. Science 232:648–650

    Article  PubMed  CAS  Google Scholar 

  47. Wszolek ZK, Pfeiffer RF, Tsuboi Y et al (2004) Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 62:1619–1622

    PubMed  CAS  Google Scholar 

  48. Yang F, Jiang Q, Zhao J, Ren Y, Sutton MD, Feng J (2005) Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem 280:17154–17162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs Jeremy Park, Jesus Benavides and Filip Lim for the use of the Park−/− and TauVLW mice; Drs Francisco Wandosell and Jose Javier Lucas for critical reading of the manuscript and for helpful discussions; and Dr. Jose Luis Sarasa for supervising the neuropathological analysis. They are also grateful to Izaskun Rodal for technical support and to the Animal Facility of the Fundación Jiménez Díaz-Capio. This work was supported by grants from the Fondo de Investigaciones Sanitarias (PI030165 and PI070023) from the Spanish Ministry of Health; P.N. and A.M.G.C. were supported by fellowships from the Fundación Conchita Rábago. Dr. Avila acts as an advisor for Neuropharma (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina P. Sanchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, R., Navarro, P., Gallego, E. et al. Hyperphosphorylated tau aggregates in the cortex and hippocampus of transgenic mice with mutant human FTDP-17 Tau and lacking the PARK2 gene. Acta Neuropathol 117, 159–168 (2009). https://doi.org/10.1007/s00401-008-0470-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0470-3

Keywords

Navigation