Skip to main content

Advertisement

Log in

Role of protein kinase B in Alzheimer's neurofibrillary pathology

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Protein kinase B (PKB) is an important intermediate in the phosphatidylinositol-3 kinase signaling cascade that acts to phosphorylate glycogen synthase kinase-3 (GSK-3) at its serine 9 residue, thereby inactivating it. Activated GSK-3 has been previously shown to be preferentially associated with neurofibrillary tangles (NFTs) in Alzheimer's disease (AD) brain. In the present study, we performed immunohistochemistry with an antibody to the active form of PKB in brains with different stages of neurofibrillary degeneration. We found that the amount of activated PKB (p-Thr308) increased in correlation to the progressive sequence of AT8 immunoreactivity and neurofibrillary changes assessed according to Braak's criteria. By confocal microscopy, activated PKB (p-Thr308) was found to appear in particular in neurons that are known to later develop NFTs in AD. Western blotting showed that activated PKB was increased by more than 50% in the 16,000-g supernatants of AD brains as compared with normal aged and Huntington's disease controls. This increase in PKB levels corresponded with a several-fold increase in the levels of total tau and abnormally hyperphosphorylated tau at the Tau-1 site. These studies suggest the involvement of PKB/GSK-3 signaling in Alzheimer neurofibrillary degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7:

Similar content being viewed by others

References

  1. Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62

    Article  CAS  PubMed  Google Scholar 

  2. Alonso A del C, Grundke-Iqbal I, Iqbal K (1996) Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filament and disassembles microtubules. Nat Med 2:783–787

    CAS  PubMed  Google Scholar 

  3. Alonso A del C, Grundke-Iqbal I, Barra HS, Iqbal K (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 94:298–303

    Article  CAS  PubMed  Google Scholar 

  4. Alonso A del C, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 98:6923–6928

    Article  CAS  PubMed  Google Scholar 

  5. Atzori C, Ghetti B, Piva R, Srinivasan AN, Zolo P, Delisle MB, Mirra SS, Migheli A (2001) Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. J Neuropathol Exp Neurol 60:1190–1197

    CAS  PubMed  Google Scholar 

  6. Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW, Lee CM (2000) Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci USA 97:11074–11079

    CAS  PubMed  Google Scholar 

  7. Braak E, Braak H (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  8. Braak E, Strotkamp B, Braak H (1991) Parvalbumin immunoreactive structures in the hippocampus of the human adult. Cell Tissue Res 264:33–48

    CAS  PubMed  Google Scholar 

  9. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567

    PubMed  Google Scholar 

  10. Braak H, Braak E, Ohm T, Bohl J (1988) Silver impregnation of Alzheimer's neurofibrillary changes counterstained for basophilic material and lipofuscin pigment. Stain Technol 63:197–200

    CAS  PubMed  Google Scholar 

  11. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    CAS  PubMed  Google Scholar 

  12. Campbell SK, Switzer RC, Martin TL (1987) Alzheimer's plaques and tangles: a controlled and enhanced silver-staining method. Soc Neurosci Abstr 13:H678

    Google Scholar 

  13. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    CAS  PubMed  Google Scholar 

  14. Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA (2000) Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 97:10236–10241

    Article  CAS  PubMed  Google Scholar 

  15. Cohen P, Alessi DR, Cross DAE (1997) PDK1, one of the missing links in insulin signal transduction. FEBS Lett 410:3–10

    Article  CAS  PubMed  Google Scholar 

  16. Cross DA, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS, Cohen P (1994) The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J 303:21–26

    CAS  PubMed  Google Scholar 

  17. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings B (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Google Scholar 

  18. Fiore RS, Bayer VE, Pelech SL, Posada J, Cooper JA, Baraban JM (1993) p42 mitogen-activated protein kinase in brain: prominent localization in neuronal cell bodies and dendrites. Neuroscience 55:463–472

    CAS  PubMed  Google Scholar 

  19. Gallyas F (1971) Silver staining of Alzheimer's neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19:1–8

    PubMed  Google Scholar 

  20. Gong C-X, Singh TJ, Grundke-Iqbal I, Iqbal K (1993) Phosphoprotein phosphatase activities in Alzheimer's disease brain. J Neurochem 61:921–927

    CAS  PubMed  Google Scholar 

  21. Gong C-X, Shaikh S, Wang J-Z, Zaidi T, Grundke-Iqbal I, Iqbal K (1995) Phosphatase activity toward abnormally phosphorylated τ: decrease in Alzheimer disease brain. J Neurochem 65:732–738

    CAS  PubMed  Google Scholar 

  22. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y-C, Zaide MS, Wisniewski HM (1986) Microtubule-associated protein tau, a component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    CAS  PubMed  Google Scholar 

  23. Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder I (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeleton pathology. Proc Natl Acad Sci USA 83:4913–4917

    CAS  PubMed  Google Scholar 

  24. Hanger D, Hughes K, Woodgett JR, Brion J-P, Anderton BH (1992) Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147:58–62

    CAS  PubMed  Google Scholar 

  25. Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR (1993) Modulation of glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J 12:803–808

    CAS  PubMed  Google Scholar 

  26. Iqbal K, Grundke-Iqbal I (1992) Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease. Mol Neurobiol 5:399–410

    Google Scholar 

  27. Iqbal K, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, Wisniewski HM, Alafuzoff I, Winblad B (1986) Defective brain microtubule assembly in Alzheimer disease. Lancet II:421–426

    Google Scholar 

  28. Ishiguro K, Ihara Y, Uchida T, Imahori K (1988) A novel tubulin-dependent protein kinase forming a paired helical filament epitope on tau. J Biochem (Tokyo) 104:319–321

    Google Scholar 

  29. Khatoon S, Grundke-Iqbal I, Iqbal K (1992) Brain levels of microtubule-associated protein tau are elevated in Alzheimer's disease: a radioimmuno-slot-blot assay for nanograms of the protein. J Neurochem 59:750–753

    CAS  PubMed  Google Scholar 

  30. Khatoon S, Grundke-Iqbal I, Iqbal K (1994) Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 351:80–84

    Article  CAS  PubMed  Google Scholar 

  31. King CC, Zenke FT, Dawson PE, Dutil EM, Newton AC, Hemmings BA, Bokoch GM (2002). Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1. J Biol Chem 275:18108–18113

    Article  Google Scholar 

  32. Kitagawa H, Warita H, Sasaki C, Zhang WR, Sakai K, Shiro Y, Mitsumoto Y, Mori T, Abe K (1999) Immunoreactive Akt, PI3-K and ERK protein kinase expression in ischemic rat brain. Neurosci Lett 274:45–48

    CAS  PubMed  Google Scholar 

  33. Köpke E, Tung Y-C, Shaikh S, Alonso A del C, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268:24374–24384

    PubMed  Google Scholar 

  34. Lesort M, Jope RS, Johnson GVW (1999) Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3β and fyn tyrosine kinase. J Neurochem 72:576–584

    Article  CAS  PubMed  Google Scholar 

  35. Lovestone S, Hugh-Reynolds C, Latimer D, Davis DR, Anderton BH, Gallo J-M, Hanger D, Mulot S, Marquaedt B, Stabel S, Woodgett JR, Miller CCJ (1994) Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Cell Biol 4: 1077–1086

    CAS  Google Scholar 

  36. Mandelkow E-M, Drewes G, Biernat J, Gustke N, Lint J, Vandenheede JR van, Mandelkow E (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associate protein tau. FEBS Lett 314:315–321

    CAS  PubMed  Google Scholar 

  37. Martin D, Salinas M, Lopez-Valdaliso R, Serrano E, Recuero M, Cuadrado A (2001) Effect of the Alzheimer amyloid fragment Abeta (25–35) on Akt/PKB kinase and survival of PC12 cells. J Neurochem 78:1000–1008

    Article  CAS  PubMed  Google Scholar 

  38. Meisinger J, Patel S, Vellody K, Bergstrom R, Benefield J, Lozano Y, Young MR (1997) Protein phosphatase-2A association with microtubules and its role in restricting the invasiveness of human head and neck squamous cell carcinoma cells. Cancer Lett 111:87–95

    Article  CAS  PubMed  Google Scholar 

  39. Moule SK, Welsh GI, Edgell NJ, Foulstone EJ, Pround CG, Denton RM (1997) Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and β-adrenergic agonists in rat epididymal fat cells. J Biol Chem 272:7713–7719

    Article  CAS  PubMed  Google Scholar 

  40. Murai H, Okazaki M, Kikuchi A (1996) Tyrosine dephosphorylation of glycogen synthase kinase-3 is involved in its extracellular signal-dependent inactivation. FEBS Lett 392:153–160

    Article  CAS  PubMed  Google Scholar 

  41. Nagy ZS, Esiri MM (1997) Apoptosis-related protein expression in the hippocampus in Alzheimer's disease. Neurobiol Aging 18:565–571

    Article  CAS  PubMed  Google Scholar 

  42. O'Toole A, Moule SK, Lockyer PJ, Halestrap AP (2001) Tumor necrosis factor-α activation of protein kinase B in WEHI-164 is accompanied by increased phosphorylation of Ser473, but not Thr308. Biochem J 259:119–127

    Article  Google Scholar 

  43. Owada Y, Utsunomiya A, Yoshimoto T, Kondo H (1997) Expression of mRNA for Akt, serine-threonine protein kinase, in the brain during development and its transient enhancement following axotomy of hypoglossal nerve. J Mol Neurosci 9:27–33

    CAS  PubMed  Google Scholar 

  44. Paudel HK (1997) Phosphorylation by neuronal cdc2-like protein kinase promotes dimerization of tau protein in vitro. J Biol Chem 272:28328–28334

    Article  CAS  PubMed  Google Scholar 

  45. Pei J-J, An WL (2002) The stress-activated C-jun amino-terminal kinase (JNK) in Alzheimer disease neurofibrillary degeneration. Brain Aging 2:26–33

    Google Scholar 

  46. Pei J-J, Tanaka T, Tung Y-C, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70–78

    CAS  PubMed  Google Scholar 

  47. Pei J-J, Grundke-Iqbal I, Iqbal K, Bogdanovic N, Winblad B, Cowburn RF (1998) Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrillary degeneration. Brain Res 797:267–277

    CAS  PubMed  Google Scholar 

  48. Pei J-J, Braak E, Braak H., Grundke-Iqbal I., Iqbal K, Winblad B., Cowburn RF (1999) Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58:1010–1019

    CAS  PubMed  Google Scholar 

  49. Pei J-J, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (2001) Distribution of active forms of C-jun kinase (JNK) and p38 kinase in brains staged with Alzheimer's disease neurofibrillary changes. J Alzheimer's Dis 3:41–48

    CAS  Google Scholar 

  50. Pei J-J, Braak H, Gong C-X, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (2002) Up-regulation of cell division cycle (cdc2) in neurons with early stage Alzheimer's disease neurofibrillary changes. Acta Neuropathol 104:369–376

    CAS  PubMed  Google Scholar 

  51. Pei J-J, Braak H, An WL, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K, (in press) Up-regulation of mitogen activated protein kinase kinase and mitogen activated protein kinase is associated with the progression of Alzheimer's disease neurofibrillary degeneration. Mol Brain Res

  52. Pigino G, Paglini G, Ulloa L, Avila J, Caceres A (1997) Analysis of the expression, distribution and function of cyclin dependent kinase 5 (cdk5) in developing cerebellar macroneurons. J Cell Sci 110:257–270

    CAS  PubMed  Google Scholar 

  53. Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W, Ping P, McLeish KR (2001) p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils. J Biol Chem 276:3517–3523

    Article  CAS  PubMed  Google Scholar 

  54. Reszka AA, Seger R, Diltz CD, Krebs E, Fischer EH (1995) Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci USA 92:8881–8885

    CAS  PubMed  Google Scholar 

  55. Sayas CL, Avila J, Wandosell F (2002) Glycogen synthase kinase-3 is activated in neuronal cells by Galpha12 and Galpha13 by Rho-independent and Rho-dependent mechanisms. J Neurosci 22:6863–6875

    CAS  PubMed  Google Scholar 

  56. Shaw M, Cohen P, Alessi DR (1997) Further evidence that the inhibition of glycogen synthase kinase-3β by IGF-1 is mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphorylation of Tyr-216. FEBS Lett 416:307–311

    Article  CAS  PubMed  Google Scholar 

  57. Shirazi SK, Wood JG (1993) The protein tyrosine kinase, fyn, in Alzheimer's disease pathology. NeuroReport 4:435–437

    CAS  PubMed  Google Scholar 

  58. Sontag E, Nunbhakdi-Craig V, Bloom GS, Mumby MC (1995) A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell-cycle. J Cell Biol: 1131–1144

    Google Scholar 

  59. Sontag E, Nunbhakdi-Craig V, Lee G, Bloom GS, Mumby MC (1996) Regulation of the phosphorylation state and microtubule-binding activity of tau by protein phosphatase 2A. Neuron 17:1201–1207

    CAS  PubMed  Google Scholar 

  60. Stein TD, Johnson JA (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activtion of cell survival pathways. J Neurosci 22:7380–7388

    CAS  PubMed  Google Scholar 

  61. Su JH, Deng G, Cotman CW (1997) Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Exp Neurol 56:86–93

    CAS  PubMed  Google Scholar 

  62. Tsujio I, Tanaka T, Kudo T, Nishikawa T, Shinozaki K, Grundke-Iqbal I, Iqbal K, Takeda M (2000) Inactivation of glycogen synthase kinase-3 by protein kinase C delta: implications for regulation of tau phosphorylation. FEBS Lett 469:111–117

    Article  CAS  PubMed  Google Scholar 

  63. Vanhaesebroeck A, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576

    CAS  PubMed  Google Scholar 

  64. Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/Factor A. EMBO J 9:2431–2438

    CAS  PubMed  Google Scholar 

  65. Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K (1996) Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPKI) glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol 92:232–241

    Article  CAS  PubMed  Google Scholar 

  66. Yamamoto-Honda R, Tobe K, Kaburagi Y, Ueki K, Asai S, Yachi M, Shirouzu M, Yodoi J, Akanuma Y, Yokoyama S, Yazaki Y, Kadowaki T (1995) Upstream mechanisms of glycogen synthase activation by insulin and insulin-like growth factor-1. J Biol Chem 270:2729–2734

    Article  CAS  PubMed  Google Scholar 

  67. York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJ (2000) Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol 20:8069–8083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Swedish Medical Research Council, Gamla Tjänarinnor Foundation, Greta Lindenau-Hansell Foundation, Loo and Hans Ostermans Foundation, Gun and Bertils Stohnes Foundation, Marianne, Marcus Wallebergs Foundation, Swedish Society for Medical Research, SHMF-9, the Deutsche Forschungsgemeinschaft, and NIH grant AG19158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Jing Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, JJ., Khatoon, S., An, WL. et al. Role of protein kinase B in Alzheimer's neurofibrillary pathology. Acta Neuropathol 105, 381–392 (2003). https://doi.org/10.1007/s00401-002-0657-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-002-0657-y

Keywords

Navigation