Skip to main content

Advertisement

Log in

Grb2-associated binder 1 is essential for cardioprotection against ischemia/reperfusion injury

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

We have shown recently that endothelial Grb-2-associated binder 1 (Gab1), an intracellular scaffolding adaptor, has a protective effect against limb ischemia via mediating angiogenic signaling pathways. However, the role of Gab1 in cardiac ischemia/reperfusion (I/R) injury remains unknown. In this study, we show that Gab1 is required for cardioprotection against I/R injury. I/R injury led to remarkable phosphorylation of Gab1 in cardiomyocytes. Compared with controls, the mice with cardiomyocyte-specific deletion of Gab1 gene (CGKO mice) exhibited an increase in infarct size and a decrease in cardiac function after I/R injury. Consistently, in hearts of CGKO mice subjected to I/R, the activation of caspase 3 and myocardial apoptosis was markedly enhanced whereas the activation of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK), which are critical for cardiomyocyte survival, was attenuated. Oxidative stress is regarded as a major contributor to myocardial I/R injury. To examine the role of Gab1 in oxidative stress directly, isolated adult cardiomyocytes were subject to oxidant hydrogen peroxide and the cardioprotective effects of Gab1 were confirmed. Furthermore, we found that the phosphorylation of Gab1 and Gab1-mediated activation of Akt and MAPK by oxidative stress was suppressed by ErbB receptor and Src kinase inhibitors, accompanied by an increase in apoptotic cell death. In conclusion, our results suggest that Gab1 is essential for cardioprotection against I/R oxidative injury via mediating survival signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y (1997) Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Investig 100:1813–1821. doi:10.1172/JCI119709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bard-Chapeau EA, Hevener AL, Long S, Zhang EE, Olefsky JM, Feng GS (2005) Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nat Med 11:567–571. doi:10.1038/nm1227

    Article  CAS  PubMed  Google Scholar 

  3. Bell Robert M, Yellon Derek M (2012) Conditioning the whole heart—not just the cardiomyocyte. J Mol Cell Cardiol 53:24–32. doi:10.1016/j.yjmcc.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  4. Behrends M, Schulz R, Post H, Alexandrov A, Belosjorow S, Michel MC, Heusch G (2000) Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. Am J Physiol Heart Circ Physiol 279:H1111–H1119

    CAS  PubMed  Google Scholar 

  5. Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA, NHLBI Working Group on the Translation of Therapies for Protecting the Heart from Ischemia (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–134. doi:10.1161/01.RES.0000137171.97172.d7

    Article  CAS  PubMed  Google Scholar 

  6. Chan PC, Sudhakar JN, Lai CC, Chen HC (2010) Differential phosphorylation of the docking protein Gab1 by c-Src and the hepatocyte growth factor receptor regulates different aspects of cell functions. Oncogene 29:698–710. doi:10.1038/onc.2009.363

    Article  CAS  PubMed  Google Scholar 

  7. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744. doi:10.1126/science.8235594

    Article  CAS  PubMed  Google Scholar 

  8. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc Res 47:446–456. doi:10.1016/S0008-6363(00)00078-X

    Article  CAS  PubMed  Google Scholar 

  9. Fan WJ, van Vuuren D, Genade S, Lochner A (2010) Kinases and phosphatases in ischaemic preconditioning: a re-evaluation. Basic Res Cardiol 105:495–511. doi:10.1007/s00395-010-0086-3

    Article  CAS  PubMed  Google Scholar 

  10. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667. doi:10.1161/01.CIR.101.6.660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gao XM, Liu Y, White D, Su Y, Drew BG, Bruce CR, Kiriazis H, Xu Q, Jennings N, Bobik A, Febbraio MA, Kingwell BA, Bucala R, Fingerle-Rowson G, Dart AM, Morand EF, Du XJ (2011) Deletion of macrophage migration inhibitory factor protects the heart from severe ischemia-reperfusion injury: a predominant role of anti-inflammation. J Mol Cell Cardiol 50:991–999. doi:10.1016/j.yjmcc.2010.12.022

    Article  CAS  PubMed  Google Scholar 

  12. Gu H, Neel BG (2003) The “Gab” in signal transduction. Trends Cell Biol 13:122–130. doi:10.1016/S0962-8924(03)00002-3

    Article  CAS  PubMed  Google Scholar 

  13. Gu H, Saito K, Klaman LD, Shen J, Fleming T, Wang Y, Pratt JC, Lin G, Lim B, Kinet JP, Neel BG (2001) Essential role for Gab2 in the allergic response. Nature 412:186–190. doi:10.1038/35084076

    Article  CAS  PubMed  Google Scholar 

  14. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 20:445–462. doi:10.1007/s10557-006-0583-7

    Article  CAS  PubMed  Google Scholar 

  15. Haubner BJ, Neely GG, Voelkl JG, Damilano F, Kuba K, Imai Y, Komnenovic V, Mayr A, Pachinger O, Hirsch E, Penninger JM, Metzler B (2010) PI3Kgamma protects from myocardial ischemia and reperfusion injury through a kinase-independent pathway. PLoS One 5:e9350. doi:10.1371/journal.pone.0009350

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907. doi:10.1089/ars.2010.3360

    Article  CAS  PubMed  Google Scholar 

  17. Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175. doi:10.1016/S0140-6736(12)60916-7

    Article  PubMed  Google Scholar 

  18. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  19. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ (1996) A Grb2-associated docking protein in EGF- and insulin-receptor signaling. Nature 379:560–564. doi:10.1038/379560a0

    Article  CAS  PubMed  Google Scholar 

  20. Holgado-Madruga M, Wong AJ (2003) Gab1 is an integrator of cell death versus cell survival signals in oxidative stress. Mol Cell Biol 23:4471–4484. doi:10.1128/MCB.23.13.4471-4484.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K, Utsumi H, Machida Y, Egashira K, Takeshita A (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86:152–157. doi:10.1161/01.RES.86.2.152

    Article  CAS  PubMed  Google Scholar 

  22. Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T (2000) Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol 20:3695–3704. doi:10.1128/MCB.20.10.3695-3704.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86. doi:10.1016/s0968-0004(96)20008-8

    Article  CAS  PubMed  Google Scholar 

  24. Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3 beta in cardioprotection. Circ Res 104:1240–1252. doi:10.1172/JCI19906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R, Sawyer DB (2004) Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 279:51141–51147. doi:10.1074/jbc.M509332200

    Article  CAS  PubMed  Google Scholar 

  26. Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, Voisin L, Saba-El-Leil MK, Meloche S, Pouysségur J, Pagès G, De Windt LJ, Doevendans PA, Molkentin JD (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109:1938–1941. doi:10.1161/01.CIR.0000127126.73759.23

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Rohrschneider LR (2002) The gift of Gab. FEBS Lett 515(1–3):1–7. doi:10.1016/S0014-5793(02)02425-0

    Article  CAS  PubMed  Google Scholar 

  28. Lu Y, Xiong Y, Huo Y, Han J, Yang X, Zhang R, Zhu DS, Klein-Hessling S, Li J, Zhang X, Han X, Li Y, Shen B, He Y, Shibuya M, Feng GS, Luo J (2011) Grb-2-associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A-endothelial NOS pathway. Proc Natl Acad Sci USA 108:2957–2962. doi:10.1073/pnas.1009395108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784:159–185. doi:10.1016/j.bbapap.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  30. Matsui T, Li L, Del Monte F, Fukui Y, Franke TF, Hajjar RJ, Rosenzweig A (1999) Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 100:2373–2379. doi:10.1161/01.CIR.100.23.2373

    Article  CAS  PubMed  Google Scholar 

  31. Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71. doi:10.1016/j.yjmcc.2004.11.00529

    Article  CAS  PubMed  Google Scholar 

  32. Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, Hajjar RJ, Rosenzweig A (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104:330–335. doi:10.1161/01.CIR.104.3.3330

    Article  CAS  PubMed  Google Scholar 

  33. Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn-Schmiedebergs Arch Pharmacol 363:245–266. doi:10.1007/s002100000363

    Article  CAS  PubMed  Google Scholar 

  34. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609. doi:10.1152/physrev.00024.2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. doi:10.1161/01.CIR.74.5.1124

    Article  CAS  PubMed  Google Scholar 

  36. Nakaoka Y, Nishida K, Narimatsu M, Kamiya A, Minami T, Sawa H, Okawa K, Fujio Y, Koyama T, Maeda M, Sone M, Yamasaki S, Arai Y, Koh GY, Kodama T, Hirota H, Otsu K, Hirano T, Mochizuki N (2007) Gab family proteins are essential for postnatal maintenance of cardiac function via neuregulin-1/ErbB signaling. J Clin Invest 117:1771–1781. doi:10.1172/JCI30651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nishida K, Hirano T (2003) The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer Sci 94:1029–1033. doi:10.1111/j.1349-7006.2003.tb01396.x

    Article  CAS  PubMed  Google Scholar 

  38. Nishida K, Wang L, Morii E, Park SJ, Narimatsu M, Itoh S, Yamasaki S, Fujishima M, Ishihara K, Hibi M, Kitamura Y, Hirano T (2002) Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood 99:1866–1869. doi:10.1182/blood.V99.5.1866

    Article  PubMed  Google Scholar 

  39. Qi D, Hu X, Wu X, Merk M, Leng L, Bucala R, Young LH (2009) Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion. J Clin Investig 119:3807–3816. doi:10.1172/JCI39738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G (2002) p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res 55:690–700. doi:10.1016/S0008-6363(02)00319-X

    Article  CAS  PubMed  Google Scholar 

  41. Reed R, Potter B, Smith E, Jadhav R, Villalta P, Jo H, Rocic P (2009) Redox-sensitive Akt and Src regulate coronary collateral growth in metabolic syndrome. Am J Physiol Heart Circ Physiol 296:H1811–H1821. doi:10.1152/ajpheart.00920.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ribichini F, Wijns W (2002) Acute myocardial infarction: reperfusion treatment. Heart 88:298–305. doi:10.1136/heart.88.3.298

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sachs M, Brohmann H, Zechner D, Müller T, Hülsken J, Walther I, Schaeper U, Birchmeier C, Birchmeier W (2000) Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 150:1375–1384. doi:10.1083/jcb.150.6.1375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Shioyama W, Nakaoka Y, Higuchi K, Minami T, Taniyama Y, Nishida K, Kidoya H, Sonobe T, Naito H, Arita Y, Hashimoto T, Kuroda T, Fujio Y, Shirai M, Takakura N, Morishita R, Yamauchi-Takihara K, Kodama T, Hirano T, Mochizuki N, Komuro I (2011) Docking protein Gab1 is an essential component of postnatal angiogenesis after ischemia via HGF/c-met signaling. Circ Res 108:664–675. doi:10.1161/CIRCRESAHA.110.232223

    Article  CAS  PubMed  Google Scholar 

  45. Singh SS, Kang PM (2011) Mechanisms and inhibitors of apoptosis in cardiovascular diseases. Curr Pharm Des 17:1783–1793. doi:10.2174/138161211796390994

    Article  CAS  PubMed  Google Scholar 

  46. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2008) Ischemic postconditioning in pigs: no causal role for risk activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  Google Scholar 

  47. Sun Y, Yuan J, Liu H, Shi Z, Baker K, Vuori K, Wu J, Feng GS (2004) Role of Gab1 in UV-induced c-Jun NH2-terminal kinase activation and cell apoptosis. Mol Cell Biol 24:1531–1539. doi:10.1128/MCB.24.4.1531-1539.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Timolati F, Ott D, Pentassuglia L, Giraud MN, Perriard JC, Suter TM, Zuppinger C (2006) Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol 41:845–854. doi:10.1016/j.yjmcc.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  49. Topol EJ (2003) Current status and future prospects for acute myocardial infarction therapy. Circulation 108:I6–I13. doi:10.1161/01.CIR.0000086950.37612.7b

  50. Wada T, Nakashima T, Oliveira-dos-Santos AJ, Gasser J, Hara H, Schett G, Penninger JM (2005) The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 11:394–399. doi:10.1038/nm1203

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Xu N, Feng X, Hou N, Zhang J, Cheng X, Chen Y, Zhang Y, Yang X (2005) Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ Res 97:821–828. doi:10.1161/01.RES.0000185833.42544.06

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, McCullough KD, Franke TF, Holbrook NJ (2000) Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 275:14624–14631. doi:10.1074/jbc.275.19.14624

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116:1413–1423. doi:10.1161/CIRCULATIONAHA.106.679589

    Article  CAS  PubMed  Google Scholar 

  54. Weng T, Mao F, Wang Y, Sun Q, Li R, Yang G, Zhang X, Luo J, Feng GS, Yang X (2010) Osteoblastic molecular scaffold Gab1 is required for maintaining bone homeostasis. J Cell Sci 123:682–689. doi:10.1242/jcs.058396

    Article  CAS  PubMed  Google Scholar 

  55. Xiao H, Ma X, Feng W, Fu Y, Lu Z, Xu M, Shen Q, Zhu Y, Zhang Y (2010) Metformin attenuates cardiac fibrosis by inhibiting the TGF beta1-Smad3 signalling pathway. Cardiovasc Res 87:504–513. doi:10.1093/cvr/cvq066

    Article  CAS  PubMed  Google Scholar 

  56. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi:10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  57. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699. doi:10.1161/01.RES.86.6.692

    Article  CAS  PubMed  Google Scholar 

  58. Zhao J, Wang W, Ha CH, Kim JY, Wong C, Redmond EM, Hamik A, Jain MK, Feng GS, Jin ZG (2011) Endothelial Grb2-associated binder 1 is crucial for postnatal angiogenesis. Arterioscler Thromb Vasc Biol 31:1016–1023. doi:10.1161/ATVBAHA.111.224493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 98:1607–1612. doi:10.1073/pnas.98.4.1607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Xiaocheng Gu and Iain C. Bruce for helpful discussions and critical comments. This study was supported by research grants from National Science Foundation of China (91339111, 81170098, and Project 31221002), the Major State Basic Research Development Programs of China (2007CB512100), and Beijing Municipal Science Funds (5082009) to J.L.; the National Basic Research Program of China (2011CB503903), National Natural Science Foundation of China (81030001) and Projects for International Cooperation and Exchanges NSFC (30910103902) to Y.Z.; the Key Project for Drug Discovery and Development in China (2009ZX09501-027) to X.Y. and a National Institutes of Health Research Grant to G.S.F. (NIHR01HL096125).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youyi Zhang or Jincai Luo.

Additional information

L. Sun, C. Chen and B. Jiang are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2014_420_MOESM1_ESM.tif

Online resource 1 The time course of the ratios of phosphorylation levels of Erk and Akt in ischemia area and non-ischemia area in rat hearts subjected to I/R. The relative band intensities of phosphor-Erk/Akt and total Erk/Akt were measured by NIH imaging system and normalized to the values of GAPDH loading control (*p<0.05). n = 3 per group (TIFF 13392 kb)

395_2014_420_MOESM2_ESM.tif

Online resource 2 The activations of Akt and MAPK were significantly reduced in Gab1-deficient hearts exposed to the ischemia (30 min) and reperfusion at early time points. a The phosphorylation of Gab1 and the activation of its downstream signaling pathways in the hearts subject to the ischemia of 30 min and reperfusion at early time points. b The activations of Akt and MAPK were significantly reduced in Gab1-deficient hearts exposed to the ischemia (30 min) and reperfusion at 2.5 min. Statistic analysis of the intensities of phosphor-Erk/Akt and total Erk/Akt was measured by NIH imaging system and normalized to the values of GAPDH loading control. (*p<0.05, **p<0.01) NS, no significant difference. n = 4 per group (TIFF 14442 kb)

395_2014_420_MOESM3_ESM.tif

Online resource 3 CGKO mice displayed normal cardiac vasculatures. a Representative photographs of heart angiography (left) and statistic analysis of the length of left anterior descending artery (red arrows) (right). NS, no significant difference. n = 5 per group. b Representative photographs of section HE staining of the heart. The vessels are stained with the antibody against CD31, an endothelial specific marker. Insets show magnificent pictures. (TIFF 15843 kb)

395_2014_420_MOESM4_ESM.tif

Online resource 4 No difference in the apoptosis of endothelial cells in the hearts of CGKO and CTR mice after I/R (I, 30 min; R, 2 h). a The representative images of CD31 (brown) and TUNEL (green) double staining analysis of non-ischemia area (N) and ischemia area (A) of the hearts from CGKO and CTR mice after I/R. The nuclei were counterstained with hematoxylin (blue). b The percentage of TUNEL-positive endothelial cells among all the apoptotic cells in ischemic area that includes infarct and peri-infarct border zones. NS, no significant difference. Scale bar = 20 μm. n = 4 per group (TIFF 15397 kb)

395_2014_420_MOESM5_ESM.tif

Online resource 5 No apoptotic inflammatory cells with the markers of CD45 (brown, a) and Mac2 (brown, b) in the hearts of CGKO and CTR mice after I/R (I, 30 min; R, 2 h). The representative double staining images show inflammatory cells (brown) and apoptotic cells (TUNEL, green) with hematoxylin (blue) for counterstaining nuclei. Scale bar = 20 μm. n = 4 per group (TIFF 17754 kb)

395_2014_420_MOESM6_ESM.tif

Online resource 6 No difference in the production of oxidative species in the heart of CGKO and CTR mice before and after I/R injury. a Representative photographs of heart horizontal sections stained with Dihydroethidium for oxidative species (DHE, red) and DAPI for nuclei (Blue). N: non-ischemia area; A: ischemia area. b Statistic analysis of relative fluorescence intensity of DHE staining. NS, no significant difference. Scale bar = 50 μm. n = 3 per group (TIFF 14565 kb)

395_2014_420_MOESM7_ESM.tif

Online resource 7 No difference in the survival rate of cardiac endothelial cells, which were isolated from CGKO and CTR mice, under oxidative stress. Representative morphological images (top panel) and quantitative survival rates (bottom panel) of endothelial cells isolated from adult CGKO and CTR mice were treated with or without H2O2 (100 μM) for 8 hrs and subject to TUNEL analysis (green) and CD31 staining (red). NS, no significant difference. n = 4 per group (TIFF 13840 kb)

Supplementary material 8 (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Chen, C., Jiang, B. et al. Grb2-associated binder 1 is essential for cardioprotection against ischemia/reperfusion injury. Basic Res Cardiol 109, 420 (2014). https://doi.org/10.1007/s00395-014-0420-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0420-2

Keywords

Navigation