Skip to main content

Advertisement

Log in

Multiplatform metabolomic fingerprinting as a tool for understanding hypercholesterolemia in Wistar rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim was to investigate the impact of hypercholesterolemic diet on the metabolome of male Wistar rats by a multiplatform metabolomic fingerprinting.

Methods

Male Wistar rats were fed with two different diets [control (C) and high-cholesterol diet (HC)—containing 2 % cholesterol and 0.5 % cholic acid]. After 7 weeks of experimental feeding, the rats were euthanized for blood collection and plasma recovery. The metabolite fingerprint was then achieved by applying a multiplatform comprising LC–MS, GC–MS and CE–MS.

Results

Multivariate statistical analysis showed a clear separation between the C and HC groups. Individual differences in metabolites were evaluated using univariate statistical analysis, and multiple metabolites were identified and confirmed in the plasma. A global profiling integrates for the first time pathways affected by high-cholesterol diet intake and allowed us to elucidate some of the associated alterations underlying the hypercholesterolemia event in Wistar rats.

Conclusions

HC feeding stimulated the alteration of multiple pathways in Wistar rats, warning of the risk of developing important diseases, which can be modulated by the diet. Further studies are required to investigate the possibilities to revert or ameliorate the negative effects triggered by HC intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nichols M, Townsend N, Scarborough P, Rayner M (2013) Cardiovascular disease in Europe: epidemiological update. Eur Heart J 34:3028–3034

    Article  Google Scholar 

  2. Artham SM, Lavie CJ, De Schutter A, Ventura HO, Milani RV (2011) Obesity, age, and cardiac risk. Curr Cardiovasc Risk Rep 5:128–137

    Article  Google Scholar 

  3. Sherzai A, Heim LT, Boothby C, Sherzai AD (2012) Stroke, food groups, and dietary patterns: a systematic review. Nutr Rev 70:423–435

    Article  Google Scholar 

  4. Andersen CJ, Fernandez ML (2013) Dietary strategies to reduce metabolic syndrome. Rev Endocr Metab Disord 14:241–254

    Article  CAS  Google Scholar 

  5. van Baak MA (2013) Nutrition as a link between obesity and cardiovascular disease: how can we stop the obesity epidemic? Thromb Haemost 110:689–696

    Article  Google Scholar 

  6. Grosso G, Mistretta A, Frigiola A, Gruttadauria S, Biondi A, Basile F, Vitaglione P, D’Orazio N, Galvano F (2014) Mediterranean diet and cardiovascular risk factors: a systematic review. Crit Rev Food Sci Nutr 54:593–610

    Article  CAS  Google Scholar 

  7. Nascimento AR, Machado M, De Jesus N, Gomes F, Lessa MA, Bonomo IT, Tibiriçá E (2013) Structural and functional microvascular alterations in a rat model of metabolic syndrome induced by a high-fat diet. Obesity 21:2046–2054

    Article  CAS  Google Scholar 

  8. McEvoy CT, Neville CE, Temple NJ, Woodside JV (2014) Effect of diet on vascular health. Rev Clin Gerontol 24:25–40

    Article  Google Scholar 

  9. Neuhofer A, Wernly B, Leitner L, Sarabi A, Sommer NG, Staffler G, Zeyda M, Stulnig TM (2014) An accelerated mouse model for atherosclerosis and adipose tissue inflammation. Cardiovasc Diabetol 13:23

    Article  Google Scholar 

  10. Mortensen A, Sorensen IK, Wilde C, Dragoni S, Mullerová D, Toussaint O, Zloch Z, Sgaragli G, Ovesná J (2008) Biological models for phytochemical research: from cell to human organism. Br J Nutr 99:ES118–ES126

    Article  Google Scholar 

  11. Rideout TC, Harding SV, Jones PJH, Fan MZ (2008) Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities. Vasc Health Risk Manag 4:1023–1033

    CAS  Google Scholar 

  12. Nørskov NP, Hedemann MS, Lærke HN, Knudsen KEB (2013) Multicompartmental nontargeted LC–MS metabolomics: explorative study on the metabolic responses of rye fiber versus refined wheat fiber intake in plasma and urine of hypercholesterolemic pigs. J Proteome Res 12:2818–2832

    Article  Google Scholar 

  13. Hanhineva K, Barri T, Kolehmainen M, Pekkinen J, Pihlajamäki J, Vesterbacka A, Solano-Aguilar G, Mykkänen H, Dragsted LO, Urban JF Jr et al (2013) Comparative nontargeted profiling of metabolic changes in tissues and biofluids in high-fat diet-fed Ossabaw pig. J Proteome Res 12:3980–3992

    Article  CAS  Google Scholar 

  14. Ramprasath VR, Jones PJH, Buckley DD, Woollett LA, Heubi JE (2013) Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans. Lipids Health Dis 12:125

    Article  Google Scholar 

  15. He W-S, Wang M-G, Pan X-X, Li J-J, Jia C-S, Zhang X-M, Feng B (2013) Role of plant stanol derivatives in the modulation of cholesterol metabolism and liver gene expression in mice. Food Chem 140:9–16

    Article  CAS  Google Scholar 

  16. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139

    Article  CAS  Google Scholar 

  17. Armitage EG, Rupérez FJ, Barbas C (2013) Metabolomics of diet-related diseases using mass spectrometry. Trac-Trends Anal Chem 52:61–73

    Article  CAS  Google Scholar 

  18. Brennan L (2013) Metabolomics in nutrition research: current status and perspectives. Biochem Soc Trans 41:670–673

    Article  CAS  Google Scholar 

  19. Kouskoumvekaki I, Panagiotou G (2011) Navigating the human metabolome for biomarker identification and design of pharmaceutical molecules. J Biomed Biotechnol Article ID 525497

  20. Ciborowski M, Ruperez JF, Martinez-Alcazar MP, Angulo S, Radziwon P, Olszanski R, Kloczko J, Barbas C (2010) Metabolomic approach with LC-MS reveals significant effect of pressure on diver’s plasma. J Proteome Res 9:4131–4137

    Article  CAS  Google Scholar 

  21. Vallejo M, García A, Tunon J, Garcia-Martinez D, Angulo S, Martin-Ventura JL, Blanco-Colio LM, Almeida P, Egido J, Barbas C (2009) Plasma fingerprinting with GC–MS in acute coronary syndrome. Anal Bioanal Chem 394:1517–1524

    Article  CAS  Google Scholar 

  22. Naz S, García A, Rusak M, Barbas C (2013) Method development and validation for rat serum fingerprinting with CE–MS: application to ventilator-induced-lung-injury study. Anal Bioanal Chem 405:4849–4858

    Article  CAS  Google Scholar 

  23. Gika HG, Macpherson E, Theodoridis GA, Wilson ID (2008) Evaluation of the repeatability of ultra-performance liquid chromatography–TOF–MS for global metabolic profiling of human urine samples. J Chromatogr B 871:299–305

    Article  CAS  Google Scholar 

  24. García A, Barbas C (2011) Gas chromatography–mass spectrometry (GC–MS)-based metabolomics. Methods Mol Biol 708:191–204

    Article  Google Scholar 

  25. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89

    Article  CAS  Google Scholar 

  26. Llorach R, Garcia-Aloy M, Tulipani S, Vazquez-Fresno R, Andres-Lacueva C (2012) Nutrimetabolomic strategies to develop new biomarkers of intake and health effects. J Agric Food Chem 60:8797–8808

    Article  CAS  Google Scholar 

  27. Rezzi S, Collino S, Goulet L, Martin F-P (2013) Metabonomic approaches to nutrient metabolism and future molecular nutrition. Trac-Trends Anal Chem 52:112–119

    Article  CAS  Google Scholar 

  28. Tajima R, Kodama S, Hirata M, Horikawa C, Fujihara K, Yachi Y, Yoshizawa S, Iida KT, Sone H (2014) High cholesterol intake is associated with elevated risk of type 2 diabetes mellitus—a meta-analysis. Clin Nutr. doi:10.1016/j.clnu.2014.03.001

    Google Scholar 

  29. Yasutake K, Kohjima M, Kotoh K, Nakashima M, Nakamuta M, Enjoji M (2014) Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J Gastroenterol 20:1756–1767

    Article  CAS  Google Scholar 

  30. Gylling H (2014) Clinical utility of serum markers of cholesterol absorption and synthesis. Curr Opin Lipidol 25:207–212

    Article  CAS  Google Scholar 

  31. McNamara DJ (2000) Dietary cholesterol and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 1529:310–320

    Article  CAS  Google Scholar 

  32. Staels B, Fonseca VA (2009) Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32:S237–S245

    Article  CAS  Google Scholar 

  33. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K (2008) Targeting bile-acid signaling for metabolic diseases. Nat Rev Drug Discov 7:678–693

    Article  CAS  Google Scholar 

  34. Reboul E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier J-F, Jourdheuil-Rahmani D, Dufour C, Collet X, Borel P (2011) Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol Nutr Food Res 55:691–702

    Article  CAS  Google Scholar 

  35. Miñambres I, Sánchez-Quesada JL, Sánchez-Hernández J, Rodríguez J, De Leiva A, Pérez A (2014) Vitamin D concentrations in familial combined hyperlipidemia: effects of lipid lowering treatment. Diabetol Metab Syndr 6: Article number 7

  36. Huang Y, Li X, Wang M, Ning H, Lima A, Li Y, Sun C (2013) Lipoprotein lipase links vitamin D, insulin resistance, and type 2 diabetes: a cross-sectional epidemiological study. Cardiovasc Diabetol 12: Article number 17

  37. Yin K, Agrawal DK (2014) Vitamin D and inflammatory diseases. J Inflamm Res 7:69–87

    CAS  Google Scholar 

  38. D’Arrigo P, Servi S (2010) Synthesis of lysophospholipids. Molecules 15:1354–1377

    Article  Google Scholar 

  39. Goyal J, Wang K, Liu M, Subbaiah PV (1997) Novel function of lecithin–cholesterol acyltransferase: hydrolysis of oxidized polar phospholipids generated during lipoprotein oxidation. J Biol Chem 272:16231–16239

    Article  CAS  Google Scholar 

  40. Calabresi L, Simonelli S, Conca P, Busnach G, Cabibbe M, Gesualdo L, Gigante M, Penco S, Veglia F, Franceschini G (2014) Acquired lecithin:cholesterol acyltransferase deficiency as a major factor in lowering plasma HDL levels in chronic kidney disease. J Intern Med. doi:10.1111/joim.12290

    Google Scholar 

  41. Schaefer EJ, Anthanont P, Asztalos BF (2014) High-density lipoprotein metabolism, composition, function, and deficiency. Curr Opin Lipidol 25:194–199

    Article  CAS  Google Scholar 

  42. Sekas G, Patton GM, Lincoln EC, Robins SJ (1985) Origin of plasma lysophosphatidylcholine: evidence for direct hepatic secretion in the rat. J Lab Clin Med 105:190–194

    CAS  Google Scholar 

  43. Taylor LA, Arends J, Hodina AK, Unger K, Massing U (2007) Plasma lysophosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis 6:17

    Article  Google Scholar 

  44. Spector AA (2009) Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res 50:S52–S56

    Article  Google Scholar 

  45. Khanapure SP, Garvey DS, Janero DR, Letts LG (2007) Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr Top Med Chem 7:311–340

    Article  CAS  Google Scholar 

  46. Das UN (2013) Arachidonic acid and lipoxin A4 as possible endogenous anti-diabetic molecules. Prostaglandins Leukot Essent Fatty Acids 88:201–210

    Article  CAS  Google Scholar 

  47. Shoji T, Kakiya R, Hayashi T, Tsujimoto Y, Sonoda M, Shima H, Mori K, Fukumoto S, Tahara H, Shioi A et al (2013) Serum n-3 and n-6 polyunsaturated fatty acid profile as an independent predictor of cardiovascular events in hemodialysis patients. Am J Kidney Dis 62:568–576

    Article  CAS  Google Scholar 

  48. Astudillo AM, Balgoma D, Balboa MA, Balsinde J (2012) Dynamics of arachidonic acid mobilization by inflammatory cells. Biochim Biophys Acta Mol Cell Biol Lipids 1821:249–256

    Article  CAS  Google Scholar 

  49. Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of Delta 6, Delta 5, and Delta 9 desaturases. Annu Rev Nutr 24:345–376

    Article  CAS  Google Scholar 

  50. Kocsis K, Knapp L, Gellért L, Oláh G, Kis Z, Takakuwa H, Iwamori N, Ono E, Toldi J, Farkas T (2014) Acetyl-l-carnitine normalizes the impaired long-term potentiation and spine density in a rat model of global ischemia. Neurosciences 269:265–272

    Article  CAS  Google Scholar 

  51. Luo T, Li J, Li L, Yang B, Liu C, Zheng Q, Jin B, Chen Z, Li K, Zhang X, Zhang J (2013) A study on the efficacy and safety assessment of propionyl-l-carnitine tablets in treatment of intermittent claudication. Thromb Res 132:427–432

    Article  CAS  Google Scholar 

  52. Schooneman MG, Vaz FM, Houten SM, Soeters MR (2013) Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62:1–8

    Article  CAS  Google Scholar 

  53. Cardounel AJ, Cui H, Samouilov A, Johnson W, Kearns P, Tsai AL, Berka V, Zweier JL (2007) Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem 282:879–887

    Article  CAS  Google Scholar 

  54. Cooke JP (2000) Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 20:2032–2037

    Article  CAS  Google Scholar 

  55. Cooke JP (2005) ADMA: its role in vascular disease. Vasc Med 10:S11–S17

    Article  Google Scholar 

  56. Laleman W, Omasta A, van de Casteele M, Zeegers M, Vander Elst I, Van Landeghem L, Severi T, van Pelt J, Roskams T, Fevery J, Nevens F (2005) A role for asymmetric dimethylarginine in the pathophysiology of portal hypertension in rats with biliary cirrhosis. Hepatology 42:1382–1390

    Article  CAS  Google Scholar 

  57. Baylis C (2006) Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Clin Pract Nephrol 2:209–220

    Article  CAS  Google Scholar 

  58. Perticone F, Sciacqua A, Maio R, Perticone M, Galiano Leone G, Bruni R, Di Cello S, Pascale A, Talarico G, Greco L, Andreozzi F, Sesti G (2010) Endothelial dysfunction, ADMA and insulin resistance in essential hypertension. Int J Cardiol 142:236–241

    Article  Google Scholar 

  59. Celik M, Cerrah S, Arabul M, Akalin A (2014) Relation of asymmetric dimethylarginine levels to macrovascular disease and inflammation markers in type 2 diabetic patients. J Diabetes Res Article number 139215

  60. Nishiyama Y, Otsuka T, Ueda M, Inagaki H, Muraga K, Abe A, Kawada T, Katayama Y (2014) Asymmetric dimethylarginine is related to the predicted stroke risk in middle-aged Japanese men. J Neurol Sci 338:87–91

    Article  CAS  Google Scholar 

  61. Sheen J-M, Chen Y-C, Tain Y-L, Huang L-T (2014) Increased circulatory asymmetric dimethylarginine and multiple organ failure: bile duct ligation in rat as a model. Int J Mol Sci 15:3989–4006

    Article  CAS  Google Scholar 

  62. Pawlak D, Tankiewicz A, Buczko W (2001) Kynurenine and its metabolites in the rat with experimental renal insufficiency. J Physio Pharmacol 52:755–766

    CAS  Google Scholar 

  63. Pawlak K, Myśliwiec M, Pawlak D (2010) Kynurenine pathway—a new link between endothelial dysfunction and carotid atherosclerosis in chronic kidney disease patients. Adv Med Sci 55:196–203

    Article  CAS  Google Scholar 

  64. Fan C-Y, Wang M-X, Ge C-X, Wang X, Li J-M, Kong L-D (2014) Betaine supplementation protects against high-fructose-induced renal injury in rats. J Nutr Biochem 25:353–362

    Article  CAS  Google Scholar 

  65. Deminice R, Troncon F, Jordao AA (2013) Methionine and methylation balance: pathways for the production and removal of homocysteine. In: Deminice R, Rosa FR, Jordao AA, Snegursky A (eds) Methionine: biosynthesis, chemical structure and toxicity. Nova Science Publishers, Hauppauge, pp 9–25

    Google Scholar 

  66. Tozzi MG, Camici M, Mascia L, Sgarrella F, Ipata PL (2006) Pentose phosphates in nucleoside interconversion and catabolism. FEBS J 273:1089–1101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Spanish Ministry of Science and Innovation [AGL2010-15910 (subprogram ALI)] and the Spanish Ministry of Economy and Competitiveness (CTQ2014-55279-R). The following projects are also acknowledged: Program Consolider-Ingenio 2010, FUN-C-FOOD, CSD2007-00063 (Spanish Ministry of Science and Innovation), and ALIBIRD, S2009/AGR-1469 (Comunidad de Madrid).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concepción Sánchez-Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Peña, D., Dudzik, D., Colina-Coca, C. et al. Multiplatform metabolomic fingerprinting as a tool for understanding hypercholesterolemia in Wistar rats. Eur J Nutr 55, 997–1010 (2016). https://doi.org/10.1007/s00394-015-0914-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0914-1

Keywords

Navigation