Skip to main content

Advertisement

Log in

Coronary artery anomalies

Part I: Recent insights from molecular embryology

Anomalien der Koronararterien Teil I: Aktuelle Erkenntnisse aus der Embryologie

  • REVIEW
  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Zusammenfassung

Angeborene Anomalien der Koronargefäße finden sich in 0,2–1,2% der Bevölkerung und können mit erheblicher Morbidität und Mortalität assoziiert sein. Diese Arbeit liefert eine Übersicht zum aktuellen Stand aus Sicht der Embryologie (Teil I) und zur klinischen Diagnostik und Therapie (Teil II).

Im vorliegenden ersten Teil der Arbeit bieten wir eine Übersicht zur koronaren Vaskulogenese, Angiogenese und embryonalen Arteriogenese. Hierbei beleuchten wir besonders die Rolle von Vorläuferzellen wie beispielsweise der epikardialen Vorläuferzellen, der kardialen Neuralleistenzellen und Vorläuferzellen des peripheren Reizleitungssystems. Darüber hinaus stellen wir die Rolle verschiedener Wachstumsfaktoren (beispielsweise FGV, HIF 1, PDGF B, TGFβ1, VEGF und VEGFR-2) und Gene (beispielsweise FOG-2, VCAM-1, Bves und RALDH2) bei der Regulation einzelner Schritte der koronaren Gefäßbildung dar.

Dieser Teil der Übersicht möchte die Vielzahl von Möglichkeiten und Mechanismen zur Entstehung koronarer Anomalitäten verdeutlichen. Deshalb verweisen wir besonders auf Ergebnisse aus Experimenten, die eine systematische Beziehung definierter Störungen auf molekularer Ebene mit koronarer Anomalie erkennen lassen. Besonders gehen wir hierbei auf die Rolle der Neuralleiste bei der Entwicklung von Koronaranomalien und deren Assoziation mit Anomalien der Aortenwurzel und Aortenklappe ein.

Summary

Congenital anomalies of the coronary arteries occur in 0.2–1.2% of the general population and may cause substantial cardiovascular morbidity and mortality. We review some of the advances that have been made both, in the understanding of the embryonic development of the coronary arteries (part I) and in the clinical diagnosis and management of their anomalies (part II).

In this first part of our review we elucidate basic mechanisms of coronary vasculogenesis, angiogenesis and embryonic arteriogenesis. Moreover, we review the role of cellular progenitors such as epicardium-derived cells, cardiac neural crest cells and cells of the peripheral conduction system. Then we discuss the role of growths factors (such as FGV, HIF 1, PDGF B, TGFβ1, VEGF, and VEGFR-2) and genes (such as FOG-2, VCAM-1, Bves, and RALDH2) at different states of coronary development. and we discuss the role of the cardiac neural crest in the concurrence of coronary anomalies with aortic root malformations.

This part of the article is designed to review major determinants of coronary vascular development to provide a better understanding of the multiplicity of options and mechanisms that may give rise to coronary anomaly. To this end, we highlight results from experiments that provide insight in mechanisms of coronary malformation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Angelini P, Villason S, Chan AVJ, Diez JG (1999) Normal and anomalous coronary arteries in humans. In: Angelini P (ed) Coronary artery anomalies: a comprehensive approach. Williams & Wilkins, Lippincott, Philadelphia, pp 27–150

  2. Bernanke DH, Valkey JM (2002) Development of the coronary blood supply: changing concepts and current ideas. Anat Rec (New Anat) 269:198–208

    Google Scholar 

  3. Bockmann DE, Redmond ME, Kirby ML (1989) Alteration of early vascular development after ablation of cranial neural crest. Anat Rec 225:209–217

    Google Scholar 

  4. Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, Peault BM, Huysmans HA (1989) Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol (Berl) 180:437–441

    Google Scholar 

  5. Cardo M, Fernandez B, Duran AC, Fernandez MC, Arque JM, Sans-Coma V (1995) Anomalous origin of the left coronary artery from the dorsal aortic sinus and its relationship with aortic valve morphology in Syrian hamsters. J Comp Pathol 112:373–380

    Google Scholar 

  6. Carmeliet P (2003) Angiogenesis in health and disease. Nature Medicine 9:653–660

    Google Scholar 

  7. Cheng G, Litchenberg WH, Cole GJ, Mikawa T, Thompson RP, Gourdie RG (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126:5041–5049

    CAS  PubMed  Google Scholar 

  8. Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, Orkin SH (2001) Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839–844

    Google Scholar 

  9. DeRuiter MC, Poelmann RE, Vander-Plas-de Vries I, Mentink MM, Gittenberger-de Groot AC (1992) The development of the myocardium and endocardium in mouse embryos. Fusion of two heart tubes? Anat Embryol (Berl) 185:461–473

    Google Scholar 

  10. Doty DB (2001) Anomalous origin of the left circumflex coronary artery associated with a bicuspid aortic valve. J Thorac Cardiovasc Surg 122:842–843

    Google Scholar 

  11. Fedak PWM, Verma S, David TE, Leask RL, Weisel RD, Butany J (2002) Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106:900–904

    Google Scholar 

  12. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nature Medicine 9:669–676

    Google Scholar 

  13. Fukiishi Y, Morris-Kay GM (1992) Migration of cranial neural crest cells to the pharyngeal arches and heart in rat embryos. Cell Tissue Res 268:1–8

    Google Scholar 

  14. Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82:1043–1052

    Google Scholar 

  15. Harris BS, O’Brien TX, Gourdie RG (2002) Coronary arteriogenesis and differentiation of periarterial Purkinje fibers in the chick heart: is there a link? Tex Heart Inst J 29:262–270

    Google Scholar 

  16. Helisch A, Schaper W (2000) Angiogenesis and arteriogenesis—not yet for prescription. Z Kardiol 89:239–244

    Google Scholar 

  17. Hidai H, Bardales R, Goodwin R, Quertermous T, Quertermous EE (1998) Cloning of capsulin, a basic helix-loop-helix factor expressed in progenitor cells of the pericardium and the coronary arteries. Mech Dev 73:33–43

    Google Scholar 

  18. Higgins CB, Wexler L (1975) Reversal of dominance of the coronary arterial system in isolated aortic stenosis. Circulation 52:292–296

    Google Scholar 

  19. Hutchins GM, Nazarian IH, Bulkley BH (1978) Association of left dominant coronary arterial system with congenital bicuspid aortic valve. Am J Cardiol 42:57–59

    Google Scholar 

  20. Jain RK (2003) Molecular regulation of vessel maturation. Nature Medicine 9:685–693

    Google Scholar 

  21. Kappetein AP, Gittenberger de Groot AC, Zwinderman AH, Rohmer J, Poelmann RE, Huysmans HA (1991) The neural crest as a possible pathogenetic factor in coarctation of the aorta and bicuspid aortic valve. J Thorac Cardiovasc Surg 102:830–836

    Google Scholar 

  22. Kirby ML, Gale TF, Steward DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061

    CAS  PubMed  Google Scholar 

  23. Kirby ML (1989) Plasticity and predetermination of the mesencephalic and trunk neural crest transplanted into the region of cardiac neural crest. Dev Biol 134:402–412

    CAS  PubMed  Google Scholar 

  24. Kirby ML, Waldo KL (1990) Role of neural crest in congenital heart disease. Circulation 82:332–340

    Google Scholar 

  25. Kirby ML, Hunt P, Wallis K, Thorogood P (1997) Abnormal patterning of the aortic arch arteries does not evoke cardiac malformations. Dev Dyn 208:34–47

    Google Scholar 

  26. Kroll J, Waltenberger J (2000) Regulation of the endothelial function and angiogenesis by vascular endothelial growth factor-A (VEGF-A). Z Kardiol 89:206–218

    Google Scholar 

  27. Kubalak SW, Sucov HM (1999) Retinoids in heart development. In: Harvey RP, Rosenthal N (eds) Heart development. Academic Press, San Diego, pp 209–219

  28. Lu J, Landerholm TE, Wei JS, Dong XR, Wu SP, Liu X, Nagata K, Inagaki M, Majesky MW (2001) Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol 240:404–418

    Article  CAS  PubMed  Google Scholar 

  29. Manner J (1993) Experimental study on the formation of the epicardium in chick embryos. Anat Embryol (Berl) 187:281–289

    Google Scholar 

  30. Manner J (1999) Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat Rec 255:212–226

    Google Scholar 

  31. Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J (2001) Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol 234:204–215

    Google Scholar 

  32. Moss JB, Xavier-Neto J, Shapiro MD, Nayeem SM, McCaffery P, Drager UC, Rosenthal N (1998) Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol 199:55–71

    Google Scholar 

  33. Munoz-Chapuli R, Gonzalez-Iriarte M, Carmona R, Atencia R, Macias D, Perez-Pomares JM (2002) Cellular precursors of the coronary arteries. Tex Heart Inst J 29:243–249

    Google Scholar 

  34. Murphy ES, Rosch J, Rahimtoola S (1977) The frequency and significance of coronary arterial dominance in isolated aortic stenosis. Am J Cardiol 39:505–509

    Google Scholar 

  35. Nishibatake M, Kirby ML, van Mierop LH (1987) Pathogenesis of persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation 75:255–264

    Google Scholar 

  36. Noden DM (1983) The role of the neural crest in patterning of avian cranial skeletal connective, and muscle tissue. Dev Biol 96:144–165

    CAS  PubMed  Google Scholar 

  37. Palamo AR, Schrager BR, Chahine RA (1995) Anomalous origin of the right coronary artery from the ascending aorta high above the left posterior sinus of Valsalva of a bicuspid aortic valve. Am Heart J 109:902–904

    Google Scholar 

  38. Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC (2002) The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex Heart Inst J 29:255–261

    Google Scholar 

  39. Poole TJ, Coffin JD (1989) Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 251:224–231

    Google Scholar 

  40. Potts JD, Dagle JM, Walder JA, Weeks DL, Runyan RB (1991) Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor beta 3. Proc Natl Acad Sci USA 88:1516–1520

    Google Scholar 

  41. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Medicine 9:677–684

    Google Scholar 

  42. Reese DE, Mikawa T, Bader DM (2002) Development of the coronary vessel system. Circ Res 91:761–768

    Google Scholar 

  43. Resnick N, Gimbrone MAJ (1995) Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J 9:874–882

    Google Scholar 

  44. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell dev Biol 11:73–91

    Google Scholar 

  45. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  46. Sans-Coma V, Arque JM, Duran AC, Cardo M, Fernandez B (1991) Coronary artery anomalies and bicuspid aortic valves in the Syrian hamster. Basic Res Cardiol 86:148–153

    Google Scholar 

  47. Schaper W, Piek JJ, Munoz-Chapuli R, Wolf C, Ito W (1999) Collateral circulation of the heart. In: Ware JA, Simons M (eds) Angiogenesis and cardiovascular disease. University Press, New York Oxford, pp 159–198

  48. Sumida H, Akimoto N, Nakamura H (1989) Distribution of the neural crest cells in the heart of birds: a three dimensional analysis. Anat Embryol 180:29–35

    Google Scholar 

  49. Takamura K, Okishima T, Ohdo S, Hayakawa K (1990) Association of cephalic neural crest cells with cardiovascular development, particularly that of the semilunar valves. Anat Embryol 182:263–272

    Google Scholar 

  50. Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fujiwara Y, Orkin SH (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of the coronary vessels from epicardium. Cell 101:729–739

    Google Scholar 

  51. Tomanek RJ, Lotun K, Clark EB, Suvarna PR, Hu N (1998) VEGF and bFGF stimulate myocardial vascularization in embryonic chick. Am J Physiol 274(5 Pt 2):H1620–1626

    Google Scholar 

  52. Tomanek RJ, Zheng W, Peters KG, Lin P, Holifield JS, Suvarna PR (2001) Multiple growth factors regulate coronary embryonic vasculogenesis. Dev Dyn 221:265–673

    Google Scholar 

  53. Tomanek RJ, Zheng W (2002) Role of growth factors in coronary morphogenesis. Tex Heart Inst J 29:250–254

    Google Scholar 

  54. Van Mierop LHS, Kutsche LM (1986) Cardiovascular anomalies in Di-George syndrome and importance of neural crest as possible pathogenetic factor. Am J Cardiol 58:133–137

    Article  CAS  PubMed  Google Scholar 

  55. von Kodolitsch Y, Aydin AM, Koschyk DH, Loose R, Schalwat I, Karck M, Cremer J, Haverich A, Berger J, Meinertz T, Nienaber A (2002) Predictors of aneurysm formation after surgical correction of aortic coarctation. J Am Coll Cardiol 39:617–624

    Google Scholar 

  56. Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Poelmann RE (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol (Berl) 199:367–378

    Google Scholar 

  57. Wada AM, Reese DE, Bader DM (2001) Bves: prototype of a new class of cell adhesion molecules expressed during coronary artery development. Development 128:2085–2093

    Google Scholar 

  58. Xavier-Neto J, Shapiro MD, Houghton L, Rosenthal N (2000) Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Dev Biol 219:129–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. von Kodolitsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Kodolitsch, Y., Ito, W.D., Franzen, O. et al. Coronary artery anomalies. Z Kardiol 93, 929–937 (2004). https://doi.org/10.1007/s00392-004-0152-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-004-0152-7

Schlüsselwörter

Key words

Navigation