Skip to main content

Advertisement

Log in

A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This work assesses the influence of the model physics in present-day regional climate simulations. It is based on a multi-phyiscs ensemble of 30-year long MM5 hindcasted simulations performed over a complex and climatically heterogeneous domain as the Iberian Peninsula. The ensemble consists of eight members that results from combining different parametrization schemes for modeling the Planetary Boundary Layer, the cumulus and the microphysics processes. The analysis is made at the seasonal time scale and focuses on mean values and interannual variability of temperature and precipitation. The objectives are (1) to evaluate and characterize differences among the simulations attributable to changes in the physical options of the regional model, and (2) to identify the most suitable parametrization schemes and understand the underlying mechanisms causing that some schemes perform better than others. The results confirm the paramount importance of the model physics, showing that the spread among the various simulations is of comparable magnitude to the spread obtained in similar multi-model ensembles. This suggests that most of the spread obtained in multi-model ensembles could be attributable to the different physical configurations employed in the various models. Second, we obtain that no single ensemble member outperforms the others in every situation. Nevertheless, some particular schemes display a better performance. On the one hand, the non-local MRF PBL scheme reduces the cold bias of the simulations throughout the year compared to the local Eta model. The reason is that the former simulates deeper mixing layers. On the other hand, the Grell parametrization scheme for cumulus produces smaller amount of precipitation in the summer season compared to the more complex Kain-Fritsch scheme by reducing the overestimation in the simulated frequency of the convective precipitation events. Consequently, the interannual variability of precipitation (temperature) diminishes (increases), which implies a better agreement with the observations in both cases. Although these features improve in general the accuracy of the simulations, controversial nuances are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR, Esteban-Parra MJ, Dudhia J, Castro-Díez Y (2011) Evaluation of WRF parameterizations for climate studies over Southern Spain using a multi-step regionalization. J Clim 24:5633–5651

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95

    Article  Google Scholar 

  • Berg LK, Zhong S (2005) Sensitivity of MM5-Simulated Boundary Layer characteristics to turbulence parameterizations. J Appl Meteorol 44:1467–1483

    Article  Google Scholar 

  • Bright DR, Mullen SL (2002) The Sensitivity of the Numerical Simulation of the Southwest Monsoon Boundary Layer to the choice of PBL turbulence parameterization in MM5. Wea Forecast 17(1):99–114

    Article  Google Scholar 

  • Castro CL, Pielke RA, Leocini G (2005) Dynamical downscaling: assessment of value retained and added using the regional atmospheric modeling system (RAMS). J Geophys Res 110:D5

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surfacehydrology model with the penn state NCAR MM5 Modeling System. Part I: model implementation and sensitivity. Mon Wea Rev 129(4):569–585

    Article  Google Scholar 

  • Chiriaco M, Vautard R, Chepfer H, Haeffelin M, Dudhia J, Wanherdrick Y, Morille Y, Protat A (2006) The ability of MM5 to simulate ice clouds: systematic comparison between simulated and measured fluxes and lidar/radar profiles at the SIRTA atmospheric observatory. Mon Wea Rev 134(3):897–918

    Article  Google Scholar 

  • Christensen OB (1999) Relaxation of soil variables in a regional climate model. Tellus A 51(5):674–685

    Article  Google Scholar 

  • Colle BA, Mass CF (2000) The 59 February 1996 flooding event over the Pacific Northwest: sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon Wea Rev 128(3):593–617

    Article  Google Scholar 

  • de Arellano JVG, Vellinga OS, Holtslag AAM, Bosveld FC, Baltink HK (2001) Observational evaluation of PBL parameterizations modeled by MM5. Preprints 11th PSU/NCAR MM5 Users Workshop, Boulder, CO, NCAR

  • Dudhia J (1989) Numerical study of convection observed during the Winter Monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107

    Article  Google Scholar 

  • Fernandez J, Montavez JP, Saenz J, Gonzalez-Rouco JF, Zorita E (2007) Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle. J Geophys Res 112:D04,101

    Google Scholar 

  • Ferretti R, Paolucci T, Zheng W, Visconti G, Bonelli P (2000) Analyses of the precipitation pattern on the alpine region using different cumulus convection parameterizations. J Appl Meteorol 39(2):182–200

    Article  Google Scholar 

  • Font-Tullot I (2000) Climatologa de Espaa y Portugal. Ed Universidad de Salamanca, Salamanca

    Google Scholar 

  • Forkel R, Knoche R (2006) Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional chemistry-climate model. J Geophys Res 111:D12,302

    Article  Google Scholar 

  • Frank H, Landberg L (1997) Modelling the wind climate of Ireland. Boundary Layer Meteorol 85:359–378

    Article  Google Scholar 

  • Gallus WA (1999) Eta simulations of three extreme precipitation events: sensitivity to resolution and convective parameterization. Wea Forecast 14:405–426

    Article  Google Scholar 

  • Galos B, Lorenz P, Jacob D (2007) Will dry events occur more often in Hungary in the future?. Environ Res Lett 2(3):034,006

    Article  Google Scholar 

  • Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet Change 62:195–209

    Article  Google Scholar 

  • Gianotti RL, Zhang D, Eltahir EAB (2012) Assessment of the regional climate model version 3 over the maritime continent using different cumulus parameterization and land surface schemes. J Clim 25(2):638–656

    Article  Google Scholar 

  • Giorgi F, Bi X (2000) A study of internal variability of a regional climate model. J Geophys Res 105(D24):29503–29529

    Article  Google Scholar 

  • Giorgi F, Marinucci MR (1996) An investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies. Mon Wea Rev 124(1):148–166

    Article  Google Scholar 

  • Gochis DJ, Shuttleworth W, Yang ZL (2002) Sensitivity of the modeled North American Monsoon regional climate to convective parameterization. Mon Wea Rev 130(5):1282–1298

    Article  Google Scholar 

  • Gomez-Navarro JJ, Montavez JP, Jimenez-Guerrero P, Jerez S, Garcia-Valero JA, Gonzalez-Rouco JF (2010) Warming patterns in regional climate change projections over the Iberian Peninsula. Meteorol Zeitschrift 19(3):275–285

    Article  Google Scholar 

  • Gomez-Navarro JJ, Montavez JP, Jerez S, Jimenez-Guerrero P, Lorente-Plazas R, Gonzalez-Rouco JF, Zorita E (2011) A regional simulation over the Iberian Peninsula for the last millenium. Clim Past 7(2):451–472

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech Note 398+STR, Natl Cent for Atmos Res, Boulder, CO

  • Grubii V, Vellore RK, Huggins AW (2005) Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: sensitivity to the microphysical parameterization and horizontal resolution. Mon Wea Rev 133(10):2834–2859

    Article  Google Scholar 

  • Han Z, Hiromasa U, An J (2008) Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models. Atmos Environ 42(2):233–249

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20,119

    Article  Google Scholar 

  • Herrera S, Fita L, Fernandez J, Gutierrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115(D21117):148–227

    Google Scholar 

  • Hofstra N, Haylock M, New M, Jones P (2009) European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res 114:D20,119

    Article  Google Scholar 

  • Hong SY, Pan HL (1996) Nonlocal Boundary Layer vertical diffusion in a medium-range forecast model. Mon Wea Rev 124:2322–2339

    Article  Google Scholar 

  • Jacob D, Barring L, Christensen OB, Christensen JH, de Castro M, Deque M, Giorgi F, Hagemann S, Lenderink G, Rockel B, Sanchez E, Schaer C, Seneviratne SI, Somot S, van Ulden A, van denHurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev 122(5):927–945

    Article  Google Scholar 

  • Jerez S, Montavez JP, Gomez-Navarro JJ, Jimenez-Guerrero P, Jimenez J, Gonzalez-Rouco JF (2010) Temperature sensitivity to the land-surface model in MM5 climate simulations over the Iberian Peninsula. Meteorol Zeitschrift 19(4):363–374

    Article  Google Scholar 

  • Jerez S, Montavez JP, Gomez-Navarro JJ, Jimenez PA, Jimenez-Guerrero P, Lorente-Plazas R, Gonzalez-Rouco JF (2012) The role of the land-surface model for climate change projections over the Iberian Peninsula. J Geophys Res 117:D01,109

    Article  Google Scholar 

  • Jimenez-Guerrero P, Gomez-Navarro JJ, Jerez S, Lorente R, Garcia-Valero JA, Montavez JP (2011) Variation of secondary inorganic aerosols (SIA) in Europe for the 21st century (1991-2100). Atmos Environ 45:1059–1063

    Article  Google Scholar 

  • Kain JS (2004) The KainFritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining Plume model and its application in convective parameterization. J Atmos Sci 47(23):2784–2802

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kerkhoven E, Gan TY, Shiiba M, Reuter G, Tanaka K (2006) A comparison of cumulus parameterization schemes in a numerical weather prediction model for a monsoon rainfall event. Hydrol Process 20:1961–1978

    Article  Google Scholar 

  • Koo GS, Boo KO, Kwon WT (2009) Projection of temperature over Korea using an MM5 regional climate simulation. Clim Res 40(2–3):241–248

    Article  Google Scholar 

  • Koster RD, Suarez MJ (1995) Relative contributions of land and ocean processes to precipitation variability. J Geophys Res 100:D7

    Article  Google Scholar 

  • Kotroni V, Lagouvardos K (2001) Precipitation forecast skill of different convective parameterization and microphysical schemes: application for the cold season over Greece. Geophys Res Lett 28(10):1977–1980

    Article  Google Scholar 

  • Leung LR, Gustafson WI (2005) Potential regional climate change and implications to U.S. air quality. Geophys Res Lett 32:L16,711

    Article  Google Scholar 

  • Leung LR, Qian Y, Bian X (2003) Hydroclimate of the Western United States based on observations and regional climate simulation of 19812000. Part I: seasonal statistics. J Clim 16(12):1892–1911

    Article  Google Scholar 

  • Liang XZ, Li L, Dai A, Kunkel KE (2004) Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys Res Lett 31:L24,208

    Google Scholar 

  • Liang XZ, Kunkel KE, Meehl GA, Jones RG, Wang JXL (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35(8):L08,709

    Article  Google Scholar 

  • Mapes BE, Warner TT, Xu M, Gochis DJ (2004) Comparison of cumulus parameterizations and entrainment using domain-mean wind divergence in a regional model. J Atmos Sci 61(11):1284–1295

    Article  Google Scholar 

  • McFarquhar GM, Zhang H, Heymsfield G, Halverson JB, Hood R, Dudhia J, Marks F (2006) Factors affecting the evolution of hurricane Erin (2001) and the distributions of hydrometeors: role of microphysical processes. J Atmos Sci 63(1):127–150

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16,663–16,682

    Article  Google Scholar 

  • Pan Z, Segal M, Arrit R, Takle E (2004) On the potential change in solar radiation over the US due to increases of atmospheric greenhouse gases. Renow Energy 29:19231928

    Google Scholar 

  • Pryor S, Barthelmie R, Kjellstrom E (2005) Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. Clim Dyn 25:815–835

    Article  Google Scholar 

  • Rakesh V, Singh R, Pal PK, Joshi PC (2007) Sensitivity of mesoscale model forecast during a satellite launch to different cumulus parameterization schemes in MM5. Pure Appl Geophys 164:1617–1637

    Article  Google Scholar 

  • Ratnam JV, Kumar KK (2005) Sensitivity of the simulated monsoons of 1987 and 1988 to convective parameterization schemes in MM5. J Clim 18(14):2724–2743

    Article  Google Scholar 

  • Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart J R Meteorol Soc 124(548):1071–1107

    Article  Google Scholar 

  • Rodrigo FS, Gomez-Navarro JJ, Montavez JP (2012) Climate variability in Andalusia (southern Spain) during the period 1701–1850 based on documentary sources: evaluation and comparison with climate model simulations. Clim Past 8:117–133

    Article  Google Scholar 

  • Rummukainen R (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96

    Article  Google Scholar 

  • Sanchez-Gomez E, Somot S, Déqué M (2009) Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961–2000. Clim Dyn 33(5):723–736

    Article  Google Scholar 

  • Soares PMM, Cardoso RM, Miranda PMA, de Medeiros J, Belo-Pereira M, Espirito-Santo F (2012a) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn. doi:10.1007/s00382-012-1315-2

  • Soares PMM, Cardoso RM, Miranda PMA, Viterbo P, Belo-Pereira M (2012b) Assessment of the ENSEMBLES regional climate models in the representation of precipitation variability and extremes over Portugal. J Geophys Res 117(D7):D07,114

    Article  Google Scholar 

  • Solman SA, Nunez MN, Cabré MF (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30(5):533–552

    Article  Google Scholar 

  • Stensrud D (2007) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, Cambridge

    Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts. Summary of research and results from the ENSEMBLES projec. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Wang W, Seaman NL (1997) A comparison study of convective parameterization schemes in a mesoscale model. Mon Wea Rev 125(2):252–278

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79

    Article  Google Scholar 

  • Yang MJ, Tung QC (2003) Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J Meteorol Soc Jpn 81(5):1163–1183

    Article  Google Scholar 

  • Zhang DL, Zheng WZ (2004) Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J Appl Meteorol 43(1):157–169

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of the Environment (project ESCENA, Ref. 200800050084265) and Project CORWES (CGL2010-22158-C02-02). The authors also gratefully acknowledge funding from the Euro-Mediterranean Institute of Water (IEA). Pedro Jiménez-Guerrero acknowledges the Ramón y Cajal Programme. Sonia Jerez thanks the Portuguese Science Foundation (FCT) for her current financial support through the project ENAC (PTDC/AAC-CLI/103567/2008) and Ricardo M. Trigo for his personal scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pedro Montavez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerez, S., Montavez, J.P., Jimenez-Guerrero, P. et al. A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim Dyn 40, 3023–3046 (2013). https://doi.org/10.1007/s00382-012-1539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1539-1

Keywords

Navigation