Skip to main content

Advertisement

Log in

A mechanism for land–ocean contrasts in global monsoon trends in a warming climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A central paradox of the global monsoon record involves reported decreases in rainfall over land during an era in which the global hydrologic cycle is both expected and observed to intensify. It is within this context that this work develops a physical basis for both interpreting the observed record and anticipating changes in the monsoons in a warming climate while bolstering the concept of the global monsoon in the context of shared feedbacks. The global-land monsoon record across multiple reanalyses is first assessed. Trends that in other studies have been taken as real are shown to likely be spurious as a result of changes in the assimilated data streams both prior to and during the satellite era. Nonetheless, based on satellite estimates, robust increases in monsoon rainfall over ocean do exist and a physical basis for this land–ocean contrast remains lacking. To address the contrast’s causes, simulated trends are therefore assessed. While projections of total rainfall are inconsistent across models, the robust land–ocean contrast identified in observations is confirmed. A feedback mechanism is proposed rooted in the facts that land areas warm disproportionately relative to ocean, and onshore flow is the chief source of monsoonal moisture. Reductions in lower tropospheric relative humidity over land domains are therefore inevitable and these have direct consequences for the monsoonal convective environment including an increase in the lifting condensation level and a shift in the distribution of convection generally towards less frequent and potentially more intense events. The mechanism is interpreted as an important modulating influence on the “rich-get-richer” mechanism. Caveats for regional monsoons exist and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler RF, Kidd C, Petty G, Morrissey M, Goodman H (2001) Intercomparison of global precipitation products: the Third Precipitation Intercomparison Project (PIP-3). Bull Am Meteorol Soc 82:1377–1396

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092

    Article  Google Scholar 

  • Arkin PA, Smith T, Sapiano MRP, Janowiak J (2010) The observed sensitivity of the global hydrological cycle to changes in surface temperature. Environ Res Lett 5. doi:10.1088/1748-9326/5/3/035201

  • Boer GJ (2011) The ratio of land to ocean temperature change under global warming. Clim Dyn. doi:10.1007/s00382-011-1112-3

    Google Scholar 

  • Chase TN, Knaff JA, Pielke RA Sr, Kalnay E (2003) Changes in global monsoon circulations since 1950. Nat Hazards 29:229–254

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen C-A, Tu J-Y (2009) Evaluating the rich-get-richer mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 23:5–7. doi:10.1002/wcc.81

    Google Scholar 

  • Deser C, Phillips AS, Bourdette V, Teng H (2011) Uncertainty in climate change projections: the role of internal variability. Clim Dyn. doi:10.1007/s00382-010-0977-x

    Google Scholar 

  • Fasullo JT (2010) Robust land–ocean contrasts in energy and water cycle feedbacks. J Clim 23:4677–4693. doi:10.1175/2010JCLI3451.1

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95. doi:10.1016/j.jhydrol.2005.07.003

    Article  Google Scholar 

  • Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472

    Article  Google Scholar 

  • Khain AP (2009) Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environ Res Lett 4 015004. doi:10.1088/1748-9326/4/1/015004

  • Kim H-J, Wang B, Ding Q (2008) The global monsoon variability simulated by CMIP3 coupled climate models. J Clim 21(20):5271–5294. doi:10.1175/2008JCLI2041.1

    Article  Google Scholar 

  • Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546

    Article  Google Scholar 

  • Ma J, Xie S-P, Kosaka Y (2011) Mechanisms for tropical tropospheric circulation change in response to global warming. J Clim (in press)

  • Meehl GA et al (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Neelin JD (2007) Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. In: Schneider T, Sobel A (eds) The global circulation of the atmosphere. Princeton University Press, Princeton, p 385

  • Nigam S, Bollasina M (2010) “Elevated heat pump” hypothesis for the aerosol-monsoon hydroclimate link: “grounded” in observations? J Geophys Res 115:D16201. doi:10.1029/2009JD013800

    Article  Google Scholar 

  • O’Gorman PA, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Natl Acad Sci 106(35):14773–14777. doi:10.107/pnas.0907610106

    Article  Google Scholar 

  • Onogi K et al (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter No. 110

  • Sun Y, Ding Y, Dai A (2010) Changing links between South Asian summer monsoon circulation and tropospheric land–sea thermal contrasts under a warming scenario. Geophys Res Lett 37:L02704. doi:10.1029/2009GL041662

    Article  Google Scholar 

  • Syed TH, Famigliettia JS, Chambers DP, Willis JK, Hilburn K (2010) Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc Natl Acad Sci USA 107(42):17916–17921. doi:10.1073/pnas.1003292107

    Google Scholar 

  • Trenberth KE, Fasullo JT (2009) Global warming due to increasing absorbed solar radiation. Geophys Res Lett. doi:10.1029/2009GL037527

  • Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulation. J Clim 13:3969–3993. doi:10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP, Caron JM (2002) Accuracy of atmospheric energy budgets from analyses. J Clim 15:3343–3360

    Article  Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated water vapor. Clim Dyn 24:741–758

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim (in press)

  • Uppala SM et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441(7089):73–76. doi:10.1038/nature04744

    Article  Google Scholar 

  • Wang B, Ding Q (2006) Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett 33:L06711. doi:10.1029/2005GL025347

    Article  Google Scholar 

  • Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Ocean 44:165–183. doi:10.1016/j.dynatmoce.2007.05.002

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and Enso: selectively interactive systems. Q J R Meteorol Soc 118:507, 877–926. doi:10.1002/qj.49711850705

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(c7 (TOGA special issue)):14451–14510

    Article  Google Scholar 

  • Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986. doi:101175/2009JCLI3329.1

    Article  Google Scholar 

  • Yang Song, Lau K-M, Kim K-M (2002) Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J Clim 15:306–325. doi:10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2

    Article  Google Scholar 

  • Yin X, Gruber A, Arkin P (2004) Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979–2001. J Hydrometeorol 5:1207–1222

    Article  Google Scholar 

  • Zhou YP, Xu K-M, Sud YC, Betts AK (2011) Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J Geophys Res 116:D09101. doi:10.1029/2010JD015197

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by NASA Awards NNX09AH89G-S01 and NNG06GB91G. I would like to acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. The author would like to thank two anonymous reviewers for their constructive comments to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fasullo.

Additional information

This paper is a contribution to the special issue on Global Monsoon Climate, a product of the Global Monsoon Working Group of the Past Global Changes (PAGES) project, coordinated by Pinxian Wang, Bin Wang, and Thorsten Kiefer.

National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasullo, J. A mechanism for land–ocean contrasts in global monsoon trends in a warming climate. Clim Dyn 39, 1137–1147 (2012). https://doi.org/10.1007/s00382-011-1270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1270-3

Keywords

Navigation