Skip to main content

Advertisement

Log in

Beneficial effects of low doses of red wine consumption on perturbed shear stress-induced atherogenesis

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Moderate wine intake is associated with a reduced risk of morbidity and mortality from cardiovascular disease. Atherosclerosis is enhanced in arterial segments exposed to disturbed flow. Perturbed shear stress increases also the endothelial expression of oxidation-sensitive responsive genes (such as ELK-1 and p-JUN). This study evaluates the effects of chronic consumption of red wine on perturbed shear stress-induced atherogenesis. Results indicated that chronic treatment with red wine significantly attenuated the activation of redox-sensitive genes (ELK-1 and p-JUN) and increased endothelial nitric oxide synthase (eNOS) expression (which was decreased by perturbed shear stress) in cultured human coronary endothelial cells (EC) and in atherosclerosis-prone areas of hypercholesterolemic mice. Oral administration of red wine to hypercholesterolemic mice reduced significantly the progression of atherosclerosis. Moreover, short-term supplementation with red wine to C57BL/6J mice significantly increased upregulation of aortic eNOS and SIRT1 expression induced by physical training. These findings establish that administration of low doses of red wine can attenuate the proatherogenic effects induced by perturbed shear stress in vitro and in vivo. This evidence may have implications for the prevention of atherosclerotic lesion progression and its clinical manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szmitko PE, Verma S. Antiatherogenic potential of red wine: clinician update (2005) Am J Physiol Heart Circ Physiol 288: H2023–H2030

  2. Ignarro LJ, Balestrieri ML, Napoli C (2007) Nutrition, physical activity, and cardiovascular disease: An update. Cardiovasc Res 73:326–340

    Article  PubMed  CAS  Google Scholar 

  3. Djoussé L, Gaziano JM (2007) Alcohol consumption and risk of heart failure in the Physicians’ Health Study I. Circulation 115: 34–39

    Article  PubMed  Google Scholar 

  4. Sato M, Maulik N, Das DK (2002) Cardioprotection with alcohol: role of both alcohol and polyphenolic antioxidants. Ann N Y Acad Sci 957:122–135

    Article  PubMed  CAS  Google Scholar 

  5. Corder R, Mullen W, Khan NQ, Marks SC, Wood EG, Carrier MJ, Crozier A (2006) Oenology: red wine procyanidins and vascular health. Nature 444:566

    Article  PubMed  CAS  Google Scholar 

  6. Curin Y, Andriantsitohaina R (2005) Polyphenols as potential therapeutical agents against cardiovascular diseases. Pharmacol Rep 57:97–107

    PubMed  Google Scholar 

  7. Rakotovao A, Berthonneche C, Guiraud A, de Lorgeril M, Salen P, de Leiris J, Boucher F (2004) Ethanol, wine, and experimental cardioprotection in ischemia/reperfusion: role of the prooxidant/antioxidant balance. Antioxid Redox Signal 6:431–438

    Article  PubMed  CAS  Google Scholar 

  8. Leikert JF, Rathel TR, Wohlfart P (2002) Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 106: 1614–1617

    Article  PubMed  CAS  Google Scholar 

  9. Wallerath T, Poleo D, Li H, Forstermann U (2003) Red wine increases the expression of human endothelial nitric oxide synthase. J Am Coll Cardiol 41:471–478

    Article  PubMed  CAS  Google Scholar 

  10. Corder R, Douthwaite JA, Lees DM, Khan NQ, Viseu Dos Santos AC, Wood EG, Carrier MJ (2001) Endothelin-1 synthesis reduced by red wine. Nature 414:863–864

    Article  PubMed  CAS  Google Scholar 

  11. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341:454–457

    Article  PubMed  CAS  Google Scholar 

  12. Aviram M, Fuhrman B (1998) Polyphenolic flavonoids inhibit macrophage-mediated oxidation of LDL and attenuate atherogenesis. Atherosclerosis 137:S45–S50

    Article  PubMed  CAS  Google Scholar 

  13. Shimada K, Watanabe H, Hosoda K, Takeuchi K, Yoshikawa J (1999) Effect of red wine on coronary flow velocity reserve. Lancet 354:1002

    Article  PubMed  CAS  Google Scholar 

  14. da Luz PL, Serrano Junior CV, Chacra AP, Monteiro HP, Yoshida VM, Furtado M, Ferreira S, Gutierrez P, Pileggi F (1999) The effect of red wine on experimental atherosclerosis: lipid-independent protection. Exp Mol Pathol 65:150–159

    Article  PubMed  Google Scholar 

  15. Vinson JA, Teufel K, Wu N (2001) Red wine, dealcoholised red wine and especially grape juice, inhibit atherosclerosis in a hamster model. Atherosclerosis 156:67–72

    Article  PubMed  CAS  Google Scholar 

  16. Soulat T, Philippe C, Bal dit Sollier C, Brezillon C, Berge N, Teissedre PL, Callebert J, Rabot S, Drouet L (2006) Wine constituents inhibit thrombosis but not atherogenesis in C57BL/6 apolipoprotein E-deficient mice. Br J Nutr 96:290–298

    Article  PubMed  CAS  Google Scholar 

  17. Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A, Aviram M (1997) Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 17:2744–2752

    PubMed  CAS  Google Scholar 

  18. Bentzon JF, Skovenborg E, Hansen C, Moller J, de Gaulejac NS, Proch J, Falk E (2001) Red wine does not reduce mature atherosclerosis in apolipoprotein E-deficient mice. Circulation 103:1681–1687

    PubMed  CAS  Google Scholar 

  19. Palinski W, Napoli C, Reaven PD (2000) Contemporary cardiology. In: Simon DI, Rogers C (eds) Vascular disease and injury-preclinical research, Harvard Series. Humana, Totowa, NJ, pp 149–174

    Google Scholar 

  20. Buga GM, Gold ME, Ignarro LJ (1991) Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 17:187–193

    PubMed  CAS  Google Scholar 

  21. Gimbrone MA Jr (1999) Vascular endothelium, hemodynamic forces, and atherogenesis. Am J Pathol 155:1–5

    PubMed  Google Scholar 

  22. Friedman MH, Hutchins GM, Bergerson CB, Deters OJ, Mark FF (1981) Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39:425–436

    Article  PubMed  CAS  Google Scholar 

  23. Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112:1018–1031

    PubMed  CAS  Google Scholar 

  24. de Nigris F, Lerman LO, Ignarro SW, Sica G, Lerman A, Palinski W, Ignarro LJ, Napoli C (2003) Beneficial effects of antioxidants and L-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress. Proc Natl Acad Sci USA 100:1420–1425

    Article  PubMed  CAS  Google Scholar 

  25. de Nigris F, Ignarro S-W, Lerman LO, Crimi E, Botti C, Mansueto G, D’Armiento FP, De Rosa G, Sica V, Ignaro LJ, Napoli C (2005) Beneficial effects of pomegranate juice on oxidation-sensitive genes and endothelial nitric oxide synthase activity at sites of perturbed shear stress. Proc Natl Acad Sci USA 102: 4896–4901

    Article  PubMed  CAS  Google Scholar 

  26. Singleton VL, Rossi JA (1965) Colorimetry of total phenols with phosphomolybdic-phosphotungstic acid reagent. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  27. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Anal Biochem 239:70–76

    Article  PubMed  CAS  Google Scholar 

  28. Ratola N, Faria JL, Alves A. Analysis and quantification of transresveratrol in wines from Alentejo Region (Portugal) (2004) Food Technol Biotechnol 42:125–130

  29. Napoli C, Williams-Ignarro S, De Nigris F, Lerman LO, Rossi L, Guarino C, Mansueto G, Di Tuoro F, Pignalosa O, De Rosa G, Sica V, Ignarro LJ (2004) Long-term combined beneficial effects of physical training and metabolic treatment on atherosclerosis in hypercholesterolemic mice. Proc Natl Acad Sci USA 101: 8797–8802

    Article  PubMed  CAS  Google Scholar 

  30. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  31. Bea F, Kreuzer J, Preusch M, Schaab S, Isermann B, Rosenfeld ME, Katus H, Blessing E (2006) Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in Apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 26:2787–2792

    Article  PubMed  CAS  Google Scholar 

  32. Fuhrman B, Volkova N, Coleman R, Aviram M (2005) Grape powder polyphenols attenuate atherosclerosis development in apolipoprotein E deficient (E0) mice and reduce macrophage atherogenicity. J Nutr 135:722–728

    PubMed  CAS  Google Scholar 

  33. Dufour MC (1999) What is moderate drinking? Defining “drinks” and drinking levels. Alcohol Res Health 23:5–14

    PubMed  CAS  Google Scholar 

  34. de Nigris F, Lerman A, Ignarro LJ, Williams-Ignarro S, Sica V, Baker AH, Lerman LO, Geng YJ, Napoli C (2003) Oxidation-sensitive mechanisms, vascular apoptosis and atherosclerosis. Trends Mol Med 9:351–359

    Article  PubMed  CAS  Google Scholar 

  35. Yesilbursa D, Serdar A, Senturk T, Serdar Z, Sag S, Cordan J (2006) Effect of N-acetylcysteine on oxidative stress and ventricular function in patients with myocardial infarction. Heart Vessels 21:33–37

    Article  PubMed  Google Scholar 

  36. Orhan G, Yapici N, Yuksel M, Sargin M, Senay S, Yalcin AS, Aykac Z, Aka SA (2006) Effects of N-acetylcysteine on myocardial ischemia-reperfusion injury in bypass surgery. Heart Vessels 21:42–47

    Article  PubMed  Google Scholar 

  37. Chiu JJ, Wung BS, Shyy JY, Hsieh HJ, Wang DL (1997) Reactive oxygen species are involved in shear stress-induced intercellular adhesion molecule-1 expression in endothelial cells. Arterioscler Thromb Vasc Biol 17:3570–3577

    PubMed  CAS  Google Scholar 

  38. Silacci P, Desgeorges A, Mazzolai L, Chambaz C, Hayoz D (2001) Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 38:1162–1166

    Article  PubMed  CAS  Google Scholar 

  39. McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, Chittur KK (2001) DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 98:8955–8960

    Article  PubMed  CAS  Google Scholar 

  40. Kroon PA, Clifford MN, Crozier A, Day AJ, Donovan JL, Manach C, Williamson G (2004) How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr 80:15–21

    PubMed  CAS  Google Scholar 

  41. Ignarro LJ, Cirino G, Napoli C (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34:879–886

    Article  PubMed  CAS  Google Scholar 

  42. Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ (2006) Nitric oxide and atherosclerosis: an update. Nitric Oxide 15:265–279

    Article  PubMed  CAS  Google Scholar 

  43. Ndiaye M, Chataigneau M, Lobysheva I, Chataigneau T, Schini-Kerth VB (2005) Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J 19:455–457

    PubMed  CAS  Google Scholar 

  44. Gambuti A, Strollo D, Ugliano M, Lecce L, Moio L (2004) trans-Resveratrol, quercetin, (+)-catechin, and (−)-epicatechin content in south Italian monovarietal wines: relationship with maceration time and marc pressing during winemaking. J Agric Food Chem 52:5747–5751

    Article  PubMed  CAS  Google Scholar 

  45. Cheynier V (2005) Polyphenols in foods are more complex than often thought. Am J Clin Nutr 81:223S–229S

    PubMed  CAS  Google Scholar 

  46. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G (2000) Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 342:454–460

    Article  PubMed  CAS  Google Scholar 

  47. Napoli C, Stanley WC, Ignarro LJ (2007) Nutrition and Cardiovascular disease: Pathogenic framework into focus. Cardiovasc Res 73:253–256

    Article  PubMed  CAS  Google Scholar 

  48. Napoli C, Williams-Ignarro S, de Nigris F, Lerman LO, D’Armiento FP, Crimi E, Byrns RE, Casamassimi A, Lanza A, Gombos F, Sica V, Ignarro LJ (2006) Physical training and metabolic supplementation reduce spontaneous atherosclerotic plaque rupture and prolong survival in hypercholesterolemic mice. Proc Natl Acad Sci USA 103:10479–10484

    Article  PubMed  CAS  Google Scholar 

  49. Avellone G, Di Garbo V, Campisi D, De Simone R, Raneli G, Scaglione R, Licata G (2006) Effects of moderate Sicilian red wine consumption on inflammatory biomarkers of atherosclerosis. Eur J Clin Nutr 60:41–47

    Article  PubMed  CAS  Google Scholar 

  50. Hozumi T, Sugioka K, Shimada K, Kim SH, Kuo MY, Miyake Y, Fujimoto K, Otsuka R, Watanabe H, Hosoda K, Yoshikawa J, Homma S (2006) Beneficial effect of short-term intake of red wine polyphenols on coronary microcirculation in patients with coronary artery disease. Heart 92:681–682

    Article  PubMed  CAS  Google Scholar 

  51. Arendt BM, Ellinger S, Kekic K, Geus L, Fimmers R, Spengler U, Muller WU, Goerlich R (2005) Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial (ISRCTN68505294). Nutr J 4:33

    Article  PubMed  CAS  Google Scholar 

  52. Guarda E, Godoy I, Foncea R, Perez DD, Romero C, Venegas R, Leighton F (2005) Red wine reduces oxidative stress in patients with acute coronary syndrome. Int J Cardiol 104:35–38

    Article  PubMed  Google Scholar 

  53. Goldberg IJ, Mosca L, Piano MR, Fisher EA; Nutrition Committee, Council on Epidemiology and Prevention; Council on Cardiovascular Nursing of the American Heart Association (2001) AHA Science Advisory: wine and your heart: a science advisory for healthcare professionals from the Nutrition Committee, Council on Epidemiology and Prevention, and Council on Cardiovascular Nursing of the American Heart Association. Circulation 103: 472–475

    PubMed  CAS  Google Scholar 

  54. Napoli C, Lerman LO, de Nigris F, Goessl M, Balestrieri ML, Lerman A (2006) Rethinking primary prevention of atherosclerosis-related diseases Circulation 114:2517–2527

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Napoli.

Additional information

These two authors contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napoli, C., Balestrieri, M.L., Sica, V. et al. Beneficial effects of low doses of red wine consumption on perturbed shear stress-induced atherogenesis. Heart Vessels 23, 124–133 (2008). https://doi.org/10.1007/s00380-007-1015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-007-1015-8

Key words

Navigation