Skip to main content

Advertisement

Log in

A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric particles in clear oligotrophic waters

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

It has recently been postulated that lithogenic particles such as Saharan dust strongly influence particulate organic carbon export to the deep ocean by acting as mineral ballast. However, our understanding of the processes involved remains scant. In the present study, optical measurements were performed to monitor variations in the concentration, composition and size distribution of particles in suspension within the water column after simulating a Saharan dust event in very clear Mediterranean waters off Corsica in June 2010. A new methodology set up in large mesocosms proved very successful in this regard. Values obtained simultaneously from three instruments (WetLabs ECO-BB3, WetLabs ac-9, Sequoia Scientific LISST-100) provided evidence that (1) part of the Saharan dust pool has a rapid settling velocity (∼24–86 m day−1), (2) particulate export following a dust event is a nonlinear multi-step process and (3) export is controlled in part by the formation of organic-mineral aggregates. This experimental study provides the first insight of the complex export processes occurring after a dust event involving both physical and biogeochemical forcings in clear oligotrophic waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal YC, Pottsmith HC (2000) Instrument for particle size and settling velocity observations in sediment transport. Mar Geol 16:89–114. doi:10.1016/S0025-3227(00)00044-X

    Article  Google Scholar 

  • Agrawal YC, Whitmire A, Mikkelsen OA, Pottsmith HC (2008) Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction. J Geophys Res 113:C04023. doi:10.1029/2007JC004403

    Article  Google Scholar 

  • Berelson WM (2002) Particle settling rates increase with depth in the ocean. Deep-Sea Res II 49:237–251. doi:10.1016/S0967-0645(01)00102-3

    Article  Google Scholar 

  • Bonnet S, Guieu C, Chiaverini J, Ras J, Stock A (2005) Effect of atmospheric nutrients on the autotrophic communities in a low nutrient, low chlorophyll system. Limnol Oceanogr 50(6):1810–1819. doi:10.4319/lo.2005.50.6.1810

    Article  Google Scholar 

  • Boss E, Pegau WS (2001) Relationship of light scattering at an angle in the backward direction to the backscattering coefficient. Appl Optics 40:5503–5507. doi:10.1364/AO.40.005503

    Article  Google Scholar 

  • Boss E, Pegau WS, Lee M, Twardowski M, Shybanov E, Korotaev G, Baratange F (2004) Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. J Geophys Res 109:C01014. doi:10.1029/2002JC001514

    Article  Google Scholar 

  • Boss E, Slade W, Hill P (2009) Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass. Opt Express 17(11):9408–9420. doi:10.1364/OE.17.009408

    Article  Google Scholar 

  • Brust J, Schulz-Bull DE, Leipe T, Chavagnac V, Waniek JJ (2011) Descending particles: from the atmosphere to the deep ocean – A time series study in the subtropical NE Atlantic. Geophys Res Lett 38:L06603. doi:10.1029/2010GL045399

    Article  Google Scholar 

  • Buat-Ménard P, Davies PJ, Remoudaki E, Miquel JC, Bergametti G, Lamber CE, Ezat E, Quétel CR, La Rosa J, Fowler SW (1989) Non-steady-state biological removal of atmospheric particles from Mediterranean surface waters. Nature 340:131–133. doi:10.1038/340131a0

    Article  Google Scholar 

  • Curran KJ, Hill PS, Milligan TG, Mikkelsen OA, Law BA, Durrieu de Madron X, Bourrin F (2007) Settling velocity, effective density, and mass composition of suspended sediment in a coastal bottom boundary layer, Gulf of Lions, France. Cont Shelf Res 27:1408–1421. doi:10.1016/j.csr.2007.01.014

    Article  Google Scholar 

  • De La Rocha CL, Nowald N, Passow U (2008) Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: further implications for the ballast hypothesis. Global Biogeochem Cy 22:GB4005. doi:10.1029/2007GB003156

    Article  Google Scholar 

  • Guieu C, Dulac F, Desboeufs K, Wagener T, Pulido-Villena E, Grisoni JM, Louis F, Ridame C, Blain S, Brunet C, Bon Nguyen E, Tran S, Labiadh M, Dominici JM (2010) Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs. Biogeosciences 7:2765–2784. doi:10.5194/bg-7-2765-2010

    Article  Google Scholar 

  • Hamm CE (2002) Interactive aggregation and sedimentation of diatoms and clay-sized lithogenic material. Limnol Oceanogr 47(6):1790–1795. doi:10.4319/lo.2002.47.6.1790

    Article  Google Scholar 

  • Langford VS, McKinley AJ, Quickenden TI (2001) Temperature dependence of the visible-near-infrared absorption spectrum of liquid water. J Phys Chem A 105(39):8916–8921. doi:10.1021/jp010093m

    Article  Google Scholar 

  • Loisel H, Morel A (1998) Light scattering and chlorophyll concentration in case 1 waters: a reexamination. Limnol Oceanogr 43(5):847–858. doi:10.4319/lo.1998.43.5.0847

    Article  Google Scholar 

  • Loisel H, Mériaux X, Berthon JF, Poteau A (2007) Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea. Limnol Oceanogr 52(2):739–752. doi:10.4319/lo.2007.52.2.0739

    Article  Google Scholar 

  • Loÿe-Pilot MD, Martin JM (1996) Saharan dust input to the Western Mediterranean: an eleven years record in Corsica. In: Guerzoni S, Chester R (eds) The impact of desert dust across the Mediterranean. Kluwer, Dordrecht, pp 191–199

    Google Scholar 

  • Maring H, Savoie DL, Izaguirre MA, Custals L, Reid JS (2003) Mineral dust aerosol size distribution change during atmospheric transport. J Geophys Res 108(D19):8592. doi:10.1029/2002JD002536

    Article  Google Scholar 

  • McKee D, Cunningham A (2006) Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents. Estuarine Coastal Shelf Sci 68:305–316. doi:10.1016/j.ecss.2006.02.010

    Article  Google Scholar 

  • Morel A (1974) Optical properties of pure water and pure seawater. In: Jerlov NG, Steeman Nielsen E (eds) Optical aspects of oceanography. Academic Press, New York, pp 1–24

    Google Scholar 

  • Morel A, Ahn YH (1991) Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells. J Mar Res 49:177–202. doi:10.1357/002224091784968639

    Article  Google Scholar 

  • Neuer S, Torres-Padrón ME, Gelado-Caballero MD, Rueda MJ, Hernández-Brito J, Davenport R, Wefer G (2004) Dust deposition pulses to the eastern subtropical North Atlantic gyre: does ocean’s biogeochemistry respond? Global Biogeochem Cy 18:GB4020. doi:10.1029/2004GB002228

    Article  Google Scholar 

  • Passow U, De La Rocha CL (2006) Accumulation of mineral ballast on organic aggregates. Global Biogeochem Cy 20:GB1013. doi:10.1029/2005GB002579

    Article  Google Scholar 

  • Pegau WS, Deric G, Zaneveld JRV (1997) Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl Optics 36(24):6035–6046. doi:10.1364/AO.36.006035

    Article  Google Scholar 

  • Ploug H, Iversen MH, Fisher G (2008) Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria. Limnol Oceanogr 53(5):1878–1886. doi:10.4319/lo.2008.53.5.1878

    Article  Google Scholar 

  • Ploug H, Terbrüggen A, Kaufmann A, Wolf-Gladrow D, Passow U (2010) A novel method to measure particle sinking velocity in vitro, and its comparison to three other in vitro methods. Limnol Oceanogr Meth 8:386–393. doi:10:4319/lom.2010.8.386

    Article  Google Scholar 

  • Reynolds RA, Stramski D, Wright VM, Wozniak SB (2010) Measurements and characterization of particle size distributions in coastal waters. J Geophys Res 115:C08024. doi:10.1029/2009JC005930

    Article  Google Scholar 

  • Stramski D, Kiefer DA (1991) Light scattering by microorganisms in the open ocean. Prog Oceanogr 28:343–383. doi:10.1016/0079-6611(91)90032-H

    Article  Google Scholar 

  • Sullivan JM, Twardowski MS, Donaghay PL, Freeman SA (2005) Use of optical scattering to discriminate particle types in coastal waters. Appl Optics 44(9):1667–1680. doi:10.1364/AO.44001667

    Article  Google Scholar 

  • Sullivan JM, Twardowski MS, Zaneveld JRV, Moore CM, Barnard AH, Donaghay PL, Rhoades B (2006) Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range. Appl Optics 45(21):5294–5309. doi:10.1364/AO.45.005294

    Article  Google Scholar 

  • Ternon E, Guieu C, Loÿe-Pilot MD, Leblond N, Bosc E, Gasser B, Miquel JC, Martin J (2010) The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea. Biogeosciences 7:809–826. doi:10.5194/bg-7-809-2010

    Article  Google Scholar 

  • Ternon E, Guieu C, Ridame C, L’Helguen S, Catala P (2011) Longitudinal variability of the biogeochemical role of Mediterranean aerosols in the Mediterranean Sea. Biogeosciences 8:1067–1080. doi:10.5194/bg-8-1067-2011

    Article  Google Scholar 

  • Twardowsky MS, Boss E, Macdonald JB, Pegau WS, Barnard AH, Zaneveld JRV (2001) A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. J Geophys Res 106(C7):14129–14142. doi:10.1029/2000JC000404

    Article  Google Scholar 

  • Ulloa O, Sathyendranath S, Platt T (1994) Effect of the particle-size distribution on the backscattering ratio in seawater. Appl Optics 33(30):7070–7077. doi:10.1364/AO.33.007070

    Article  Google Scholar 

  • Westberry TK, Dall’Olmo G, Boss E, Behrenfeld MJ, Moutin T (2010) Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments. Opt Express 18(15):15419–15425. doi:10.1364/OE.18.015419

    Article  Google Scholar 

  • Zaneveld JRV, Kitchen JC, Moore CC (1994) The scattering error correction of reflecting tube absorption meters. In: Ackleson S (ed) Ocean Optics XII. Proc SPIE 2258, pp 44–55. doi:10.1117/12.190095

Download references

Acknowledgements

Matthieu Bressac acknowledges a grant provided by the ACRI-ST company and the French National Association for Research and Technology (ANRT). This work was funded by the ANR DUNE project under contract ANR-07-BLAN-0126-01. Francis Louis is thanked for his help in the conception of the ‘optical’ mesocosm and Orens Pasqueron De Fommervault for assistance in the preparation of the campaign. Thibaut Wagener, Christophe Brunet and Karine Desboeufs are greatly acknowledged for their help in field measurements. The authors thank Céline Ridame and Christophe Brunet for providing salinity and chlorophyll data respectively. This field campaign could not have taken place without the logistical support and facilities of the Parc Naturel Régional de Corse, and the diving expertise of David Luquet and Christian Rouvière from the Observatoire Océanologique de Villefranche. We warmly thank Alina Ebling who kindly polished the English and two anonymous reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Bressac.

Additional information

Responsible guest editor: O. Mikkelsen

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Overview of sampling plan. Optical profiling was carried out for ∼54 h between the 25th and 28th of June 2010 inside and outside the mesocosm. * Profile was stopped at 5 m depth because of current flow, ** profile excluded in analysis because of LISST-100 artifact, *** switched over to a ECO-BB3 NIR (measures bbp at 720, 770 and 870 nm; data not shown in this study) (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressac, M., Guieu, C., Doxaran, D. et al. A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric particles in clear oligotrophic waters. Geo-Mar Lett 32, 153–164 (2012). https://doi.org/10.1007/s00367-011-0269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-011-0269-4

Keywords

Navigation