Skip to main content
Log in

hr-Adaptivity for nonconforming high-order meshes with the target matrix optimization paradigm

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We present an \(hr\)-adaptivity framework for optimization of high-order meshes. This work extends the r-adaptivity method by Dobrev et al. (Comput Fluids, 2020), where we utilized the Target-Matrix Optimization Paradigm (TMOP) to minimize a functional that depends on each element’s current and target geometric parameters: element aspect-ratio, size, skew, and rotation. Since fixed mesh topology limits the ability to achieve the target size and aspect-ratio at each position, in this paper, we augment the r-adaptivity framework with nonconforming adaptive mesh refinement to further reduce the error with respect to the target geometric parameters. The proposed formulation, referred to as \(hr\)-adaptivity, introduces TMOP-based quality estimators to satisfy the aspect-ratio target via anisotropic refinements and size target via isotropic refinements in each element of the mesh. The methodology presented is purely algebraic, extends to both simplices and hexahedra/quadrilaterals of any order, and supports nonconforming isotropic and anisotropic refinements in 2D and 3D. Using a problem with a known exact solution, we demonstrate the effectiveness of \(hr\)-adaptivity over both r- and \(h\)-adaptivity in obtaining similar accuracy in the solution with significantly fewer mesh nodes. We also present several examples that show that \(hr\)-adaptivity can help satisfy geometric targets even when \(r\)-adaptivity fails to do so, due to the topology of the initial mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dobrev V, Knupp P, Kolev T, Mittal K, Rieben R, Tomov V (2020) Simulation-driven optimization of high-order meshes in ALE hydrodynamics. Comput Fluids

  2. Vollmer J, Mencl R, Mueller H (1999) Improved Laplacian smoothing of noisy surface meshes. Computer graphics forum, vol 18. Wiley Online Library, Hoboken, pp 131–138

    Google Scholar 

  3. Field DA (1988) Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods 4(6):709–712

    Article  Google Scholar 

  4. Taubin G et al (2001) Linear anisotropic mesh filtering. Res Rep RC2213 IBM 1 (4)

  5. Knupp P (2012) Introducing the target-matrix paradigm for mesh optimization by node movement. Eng Compt 28(4):419–429

    Article  Google Scholar 

  6. Gargallo-Peiró A, Roca X, Peraire J, Sarrate J (2015) Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes. Int J Numer Methods Eng 103(5):342–363

    Article  MathSciNet  Google Scholar 

  7. Mittal K, Fischer P (2019) Mesh smoothing for the spectral element method. J Sci Comput 78(2):1152–1173

    Article  MathSciNet  Google Scholar 

  8. Dobrev V, Knupp P, Kolev T, Mittal K, Tomov V (2019) The target-matrix optimization paradigm for high-order meshes. SIAM J Sci Comput 41(1):B50–B68

    Article  MathSciNet  Google Scholar 

  9. Greene PT, Schofield SP, Nourgaliev R (2017) Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation. J Comput Phys 335:664–687

    Article  MathSciNet  Google Scholar 

  10. Turner M, Peiró J, Moxey D (2018) Curvilinear mesh generation using a variational framework. Comput-Aided Des 103:73–91

    Article  MathSciNet  Google Scholar 

  11. Huang W, Ren Y, Russell RD (1994) Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J Numer Anal 31(3):709–730

    Article  MathSciNet  Google Scholar 

  12. W. Huang, R. D. Russell, Adaptive moving mesh methods, Springer Science & Business Media, 2010

  13. Anderson RW, Dobrev VA, Kolev TV, Rieben RN (2015) Monotonicity in high-order curvilinear finite element arbitrary Lagrangian-Eulerian remap. Int J Numer Methods Fluids 77(5):249–273

    Article  MathSciNet  Google Scholar 

  14. Cerveny J, Dobrev V, Kolev T (2019) Nonconforming mesh refinement for high-order finite elements. SIAM J Sci Comput 41(4):C367–C392

    Article  MathSciNet  Google Scholar 

  15. Barros F, Proença S, de Barcellos C (2004) On error estimator and p-adaptivity in the generalized finite element method. Int J Numer Methods Eng 60(14):2373–2398

    Article  Google Scholar 

  16. Mackenzie J, Mekwi W (2020) An hr-adaptive method for the cubic nonlinear Schrödinger equation. J Comput Appl Math 364:112320

    Article  MathSciNet  Google Scholar 

  17. Piggott M, Pain C, Gorman G, Power P, Goddard A (2005) h, r, and hr adaptivity with applications in numerical ocean modelling. Ocean Model 10(1–2):95–113

    Article  Google Scholar 

  18. Jahandari H, MacLachlan S, Haynes RD, Madden N (2020) Finite element modelling of geophysical electromagnetic data with goal-oriented hr-adaptivity. Comput Geosci 24:1257–1283

    Article  MathSciNet  Google Scholar 

  19. Piggott M, Farrell P, Wilson C, Gorman G, Pain C (2009) Anisotropic mesh adaptivity for multi-scale ocean modelling. Philos Trans R Soc A Math Phys Eng Sci 367(1907):4591–4611

    Article  MathSciNet  Google Scholar 

  20. Ong B, Russell R, Ruuth S (2013) An hr moving mesh method for one-dimensional time-dependent pdes. In: Proceedings of the 21st International Meshing Roundtable, Springer, pp 39–54

  21. Mostaghimi P, Percival JR, Pavlidis D, Ferrier RJ, Gomes JL, Gorman GJ, Jackson MD, Neethling SJ, Pain CC (2015) Anisotropic mesh adaptivity and control volume finite element methods for numerical simulation of multiphase flow in porous media. Math Geosci 47(4):417–440

    Article  MathSciNet  Google Scholar 

  22. Piggott M, Gorman G, Pain C, Allison P, Candy A, Martin B, Wells M (2008) A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes. Int J Numer Methods Fluids 56(8):1003–1015

    Article  MathSciNet  Google Scholar 

  23. Walkley M, Jimack PK, Berzins M (2002) Anisotropic adaptivity for the finite element solutions of three-dimensional convection-dominated problems. Int J Numer Methods Fluids 40(3–4):551–559

    Article  Google Scholar 

  24. Antonietti PF, Houston P (2020) An hr-adaptive discontinuous Galerkin method for advection-diffusion problems. In: Communications to SIMAI congress, Vol 3

  25. Edwards MG, Oden JT, Demkowicz L (1993) An h-r-adaptive approximate riemann solver for the Euler equations in two dimensions. SIAM J Sci Comput 14(1):185–217

    Article  MathSciNet  Google Scholar 

  26. Knupp P (2019) Target formulation and construction in mesh quality improvement, Tech. Rep. LLNL-TR-795097, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)

  27. Dobrev VA, Knupp P, Kolev TV, Tomov VZ (2019) Towards Simulation-Driven Optimization of High-Order Meshes by the Target-Matrix Optimization Paradigm. Springer International Publishing 285–302

  28. Knupp P (2020) Metric type in the target-matrix mesh optimization paradigm, Tech. Rep. LLNL-TR-817490, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)

  29. Mittal K, Dutta S, Fischer P (2019) Nonconforming Schwarz-spectral element methods for incompressible flow. Comput Fluids 191:104237

    Article  MathSciNet  Google Scholar 

  30. Garanzha VA (2010) Polyconvex potentials, invertible deformations, and thermodynamically consistent formulation of the nonlinear elasticity equations. Comput Math Math Phys 50(9):1561–1587

    Article  MathSciNet  Google Scholar 

  31. Babuska I, Rheinboldt WC (1979) Reliable error estimation and mesh adaptation for the finite element method. Maryland Univ College Park Inst For Physical Science And Technology, Tech. rep

  32. Ainsworth M, Oden JT (2011) A posteriori error estimation in finite element analysis, vol 37. John Wiley & Sons, Hoboken

    MATH  Google Scholar 

  33. Anderson R, Andrej J, Barker A, Bramwell J, Camier J-S, Dobrev JCV, Dudouit Y, Fisher A, Kolev T, Pazner W, Stowell M, Tomov V, Akkerman I, Dahm J, Medina D, Zampini S (2020) MFEM: a modular finite element library. Comput Math Appl 81:42–74. https://doi.org/10.1016/j.camwa.2020.06.009

    Article  MathSciNet  MATH  Google Scholar 

  34. MFEM: Modular finite element methods [Software], https://mfem.org. https://doi.org/10.11578/dc.20171025.1248

  35. Barlow A, Hill R, Shashkov MJ (2014) Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian-Eulerian hydrodynamics. J Comput Phys 276:92–135

    Article  MathSciNet  Google Scholar 

  36. Dobrev VA, Kolev TV, Rieben RN, Tomov VZ (2016) Multi-material closure model for high-order finite element Lagrangian hydrodynamics. Int J Numer Methods Fluids 82(10):689–706

    Article  MathSciNet  Google Scholar 

  37. Anderson RW, Dobrev VA, Kolev TV, Rieben RN, Tomov VZ (2018) High-order multi-material ALE hydrodynamics. SIAM J Sci Comput 40(1):B32–B58

    Article  MathSciNet  Google Scholar 

  38. Laghos: High-order Lagrangian hydrodynamics miniapp [Software], https://github.com/ceed/Laghos (2020)

  39. Zeng X, Scovazzi G (2016) A variational multiscale finite element method for monolithic ALE computations of shock hydrodynamics using nodal elements. J Comput Phys 315:577–608

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jakub Cerveny for helpful discussions regarding the nonconforming mesh refinement framework that the work in this paper is based on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketan Mittal.

Ethics declarations

Funding

This work was funded by the Department of Energy Office of Science.

Conflict of interest

All the authors declare that they have no conflict of interest.

Availability of data and material

All the methods developed in this work are available through the open-source code MFEM [34].

Author contributions

Veselin Dobrev: conceptualization, methodology, software, and investigation. Patrick Knupp: conceptualization, methodology, writing, and investigation. Tzanio Kolev: conceptualization, methodology, writing, and investigation. Ketan Mittal: conceptualization, methodology, software, validation, investigation, writing, and visualization. Vladimir Tomov: conceptualization, methodology, software, investigation, and writing.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344 (LLNL-JRNL-814656).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrev, V., Knupp, P., Kolev, T. et al. hr-Adaptivity for nonconforming high-order meshes with the target matrix optimization paradigm. Engineering with Computers 38, 3721–3737 (2022). https://doi.org/10.1007/s00366-021-01407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01407-6

Keywords

Navigation