Skip to main content
Log in

Absence of adaptive nonshivering thermogenesis in a marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The presence of nonshivering thermogenesis in marsupials is controversially debated. Survival of small eutherian species in cold environments is crucially dependent on uncoupling protein 1 (UCP1)-mediated, adaptive nonshivering thermogenesis that is executed in brown adipose tissue. In a small dasyurid marsupial species, the fat-tailed dunnart (Sminthopsis crassicaudata), an orthologue of UCP1 has been recently identified which is upregulated during cold exposure resembling adaptive molecular adjustments of eutherian brown adipose tissue. Here, we tested for a thermogenic function of marsupial brown adipose tissue and UCP1 by evaluating the capacity of nonshivering thermogenesis in cold-acclimated dunnarts. In response to an optimal dosage of noradrenaline, cold-acclimated dunnarts (12°C) showed no additional recruitment of noradrenaline-induced maximal thermogenic capacity in comparison to warm-acclimated dunnarts (24°C). While no differences in body temperature were observed between the acclimation groups, basal metabolic rate was significantly elevated after cold acclimation. Therefore, we suggest that adaptive nonshivering thermogenesis does not occur in this marsupial species despite the cold recruitment of oxidative capacity and UCP1 in the interscapular fat deposit. In conclusion, the ancient UCP orthologue in marsupials does not contribute to the classical nonshivering thermogenesis, and may exhibit a different physiological role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAT:

Brown adipose tissue

BMR:

Basal metabolic rate

CA:

Cold acclimated

FADH:

Flavin adenine dinucleotide

FFA:

Free fatty acid

NA:

Noradrenaline

NADH:

Nicotinamide adenine dinucleotide

NST:

Nonshivering thermogenesis

RMR:

Resting metabolic rate

RQ:

Respiratory quotient

T a :

Ambient temperature

T b :

Body temperature

UCP:

Uncoupling protein

\( \dot{V}{\text{O}}_{ 2} \) :

Rate of oxygen consumption

WA:

Warm acclimated

References

  • Böckler H, Steinlechner S, Heldmaier G (1982) Complete cold substitution of noradrenaline-induced thermogenesis in the Djungarian hamster, Phodopus sungorus. Experientia 38:261–262

    Article  PubMed  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  • Cannon B, Nedergaard J (2011) Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol 214:242–253

    Article  PubMed  Google Scholar 

  • Carlisle HJ, Stock MJ (1993) Thermoregulatory responses to beta-adrenergic agonists at low ambient temperatures in the rat. Exp Physiol 78:775–786

    PubMed  CAS  Google Scholar 

  • Chaffee RR, Roberts JC (1971) Temperature acclimation in birds and mammals. Ann Rev Physiol 33:155–202

    Article  CAS  Google Scholar 

  • Clements F, Hope P, Daniels C, Chapman I, Wittert G (1998) Thermogenesis in the marsupial Sminthopsis crassicaudata: effect of catecholamines and diet. Aust J Zool 46:381–390

    Article  Google Scholar 

  • Dawson TJ, Hulbert AJ (1970) Standard metabolism, body temperature, and surface areas of Australian marsupials. Am J Physiol 218:1233–1238

    PubMed  CAS  Google Scholar 

  • Dawson TJ, Olson JM (1988) Thermogenic capabilities of the opossum Monodelphis domestica when warm and cold acclimated: similarities between American and Australian marsupials. Comp Biochem Physiol A 89:85–91

    Article  PubMed  CAS  Google Scholar 

  • Frappell PB, Butler PJ (2004) Minimal metabolic rate, what it is, its usefulness, and its relationship to the evolution of endothermy: a brief synopsis. Physiol Biochem Zool 77:865–868

    Article  PubMed  CAS  Google Scholar 

  • Frappell P, Lanthier C, Baudinette RV, Mortola JP (1992) Metabolism and ventilation in acute hypoxia: a comparative analysis in small mammalian species. Am J Physiol Reg I 262:R1040–R1046

    CAS  Google Scholar 

  • Gavrilova O, Leon LR, Marcus-Samuels B, Mason MM, Castle AL, Refetoff S, Vinson C, Reitman ML (1999) Torpor in mice is induced by both leptin-dependent and -independent mechanisms. Proc Natl Acad Sci USA 96:14623–14628

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344

    Article  Google Scholar 

  • Golozoubova V, Cannon B, Nedergaard J (2006) UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. Am J Physiol Endoc M 291:E350–E357

    CAS  Google Scholar 

  • Haim A, Fourie le FR (1980) Heat production in cold and long scotophase acclimated and winter acclimatized rodents. Int J Biometeorol 24:231–236

    Article  PubMed  CAS  Google Scholar 

  • Hammond KA, Kristan DM (2000) Responses to lactation and cold exposure by deer mice (Peromyscus maniculatus). Physiol Biochem Zool 73:547–556

    Article  PubMed  CAS  Google Scholar 

  • Hayward JS, Lisson PA (1992) Evolution of brown fat—its absence in Marsupials and Monotremes. Can J Zool 70:171–179

    Article  Google Scholar 

  • Heldmaier G (1971) Nonshivering thermogenesis and body size in mammals. J Comp Physiol 73:222–247

    Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia 48:265–270

    Article  Google Scholar 

  • Heldmaier G, Klaus S, Wiesinger H, Friedrichs U, Wenzel M (1989) Cold acclimation and thermogenesis. In: Malan A, Canguiljem B, John Libbey (eds) Living in the Cold II. Eurotext Ltd, Montrouge, pp 347–358

    Google Scholar 

  • Holloway JC, Geiser F (1995) Influence of torpor on daily energy expenditure of the dasyurid marsupial Smithopsis crassicaudata. Comp Biochem Physiol A 112:59–66

    Article  CAS  Google Scholar 

  • Holloway JC, Geiser F (2001) Seasonal changes in the thermoenergetics of the marsupial sugar glider, Petaurus breviceps. J Comp Physiol B 171:643–650

    Article  PubMed  CAS  Google Scholar 

  • Hope PJ, Pyle D, Daniels CB, Chapman I, Horowitz M, Morley JE, Trayhurn P, Kumaratilake J, Wittert G (1997) Identification of brown fat and mechanisms for energy balance in the marsupial, Sminthopsis crassicaudata. Am J Physiol Reg I 273:R161–R167

    CAS  Google Scholar 

  • Hulbert AJ, Dawson TJ (1974) Standard metabolism and body temperature of perameloid marsupials from different environments. Comp Biochem Physiol 47:583–590

    Article  CAS  Google Scholar 

  • Ikonomopoulou MP, Rose RW (2006) The development of endothermy during pouch life in the eastern barred bandicoot (Perameles gunnii), a marsupial. Physiol Biochem Zool 79:468–473

    Article  PubMed  CAS  Google Scholar 

  • Jansky L (1973) Non-shivering thermogenesis and its thermoregulatory significance. Biol Rev 48:85–132

    PubMed  CAS  Google Scholar 

  • Jastroch M, Withers KW, Taudien S, Frappell PB, Helwig M, Fromme T, Hirschberg V, Heldmaier G, McAllan BM, Firth BT, Burmester T, Platzer M, Klingenspor M (2008) Marsupial uncoupling protein 1 sheds light on the evolution of mammalian nonshivering thermogenesis. Physiol Genom 32:161–169

    Article  CAS  Google Scholar 

  • Kabat AP, Rose RW, Harris J, West AK (2003a) Molecular identification of uncoupling proteins (UCP2 and UCP3) and absence of UCP1 in the marsupial Tasmanian bettong, Bettongia gaimardi. Comp Biochem Physiol B 134:71–77

    Article  PubMed  Google Scholar 

  • Kabat AP, Rose RW, West AK (2003b) Non-shivering thermogenesis in a carnivorous marsupial, Sarcophilus harrisii, in the absence of UCP1. J Therm Biol 28:413–420

    Article  CAS  Google Scholar 

  • Kennedy PM, Macfarlane WV (1971) Oxygen consumption and water turnover of the fat-tailed marsupials Dasycercus cristicauda and Sminthopsis crassicaudata. Comp Biochem Physiol A 40:723–732

    Article  PubMed  CAS  Google Scholar 

  • Klingenspor M, Fromme T, Hughes DA Jr, Manzke L, Polymeropoulos E, Riemann T, Trzcionka M, Hirschberg V, Jastroch M (2008) An ancient look at UCP1. BBA Bioenerg 1777:637–641

    Article  CAS  Google Scholar 

  • Koteja P (1996) Limits to energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiol Zool 69:994–1020

    Google Scholar 

  • Loudon A, Rothwell N, Stock M (1985) Brown fat, thermogenesis and physiological birth in a marsupial. Comp Biochem Physiol A 81:815–819

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, O’Brian RC (1986) Is brown fat necessary? In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold. Elsevier, New York, pp 109–116

    Google Scholar 

  • MacMillen RE, Nelson JE (1969) Bioenergetics and body size in dasyruid marsupials. Am J Physiol 217:1246–1251

    PubMed  CAS  Google Scholar 

  • Maskrey M, Wiggins PR, Frappell PB (2001) Behavioral thermoregulation in obese and lean zucker rats in a thermal gradient. Am J Physiol Reg I 281:R1675–R1680

    CAS  Google Scholar 

  • Mejsnar J, Jansky L (1971) Means of noradrenalin action during non-shivering thermogenesis in a single muscle. Int J Biometeorol 15:321–324

    Article  PubMed  CAS  Google Scholar 

  • Mzilikazi N, Lovegrove BG (2006) Noradrenalin induces thermogenesis in a phylogenetically ancient eutherian mammal, the rock elephant shrew, Elephantulus myurus. J Comp Physiol B 176:75–84

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–64

    PubMed  CAS  Google Scholar 

  • Nicol SC (1978) Non-shivering thermogenesis in the potoroo, Potorous tridactylus (Kerr). Comp Biochem Physiol 59:33–37

    CAS  Google Scholar 

  • Nicol SC, Pavlides D, Andersen NA (1997) Nonshivering thermogenesis in marsupials: absence of thermogenic response to α-adrenergic agonists. Comp Biochem Physiol A 117:399–405

    Article  CAS  Google Scholar 

  • Oelkrug R, Heldmaier G, Meyer CW (2011) Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice. J Comp Physiol B 181:137–145

    Article  PubMed  CAS  Google Scholar 

  • Puerta ML, Abelenda M (1987) Cold acclimation in food-restricted rats. Comp Biochem Physiol A 87:31–33

    Article  PubMed  CAS  Google Scholar 

  • Rafael J, Vsiansky P, Heldmaier G (1985) Increased contribution of brown adipose tissue to nonshivering thermogenesis in the Djungarian hamster during cold-adaptation. J Comp Physiol B 155:717–722

    Article  PubMed  CAS  Google Scholar 

  • Reynolds W, Hulbert AJ (1982) Cold acclimation in a small dasyurid marsupial. In: Archer M (ed) Carnivorous marsupials. Surrey Beatty and Sons, Sydney, pp 279–283

    Google Scholar 

  • Rose RW, West AK, Ye JM, McCormack GH, Colquhoun EQ (1999) Nonshivering thermogenesis in a marsupial (the Tasmanian bettong Bettongia gaimardi) is not attributable to brown adipose tissue. Physiol Biochem Zool 72:699–704

    Article  PubMed  CAS  Google Scholar 

  • Scantlebury M, Lovegrove BG, Jackson CR, Bennett NC, Lutermann H (2008) Hibernation and non-shivering thermogenesis in the Hottentot golden mole (Amblysomus hottentottus longiceps). J Comp Physiol B 178:887–897

    Article  PubMed  CAS  Google Scholar 

  • Sparti A (1992) Thermogenic capacity of shrews (Mammalia, Soricidae) and its relationship with basal rate of metabolism. Physiol Zool 65:77–96

    Google Scholar 

  • Tong ACY, Di Maria CA, Rattigan S, Clark MG (1999) Na+ channel and Na+–K+ ATPase involvement in norepinephrine- and veratridine-stimulated metabolism in perfused rat hind limb. Can J Physiol Pharm 77:350–357

    CAS  Google Scholar 

  • Vaughan TA, Ryan JM, Czaplewski NJ (2000) Mammalogy. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Warnecke L, Turner JM, Geiser F (2008) Torpor and basking in a small arid zone marsupial. Naturwissenschaften 95:73–78

    Article  PubMed  CAS  Google Scholar 

  • Withers PC, Thompson GG, Seymour RS (2000) Metabolic physiology of the north-western marsupial mole, Notoryctes caurinus (Marsupialia: Notoryctidae). Aust J Zool 48:241–258

    Article  Google Scholar 

  • Wunder BA, Gettinger RD (1996) Effects of body mass and temperature acclimation on the nonshivering thermogenic response of small mammals. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: Tenth International Hibernation Symposium. University of New England Press, Armidale, pp 131–139

    Google Scholar 

  • Ye JM, Edwards SJ, Rose RW, Steen JT, Clark MG, Colquhoun EQ (1996) α-Adrenergic stimulation of thermogenesis in a rat kangaroo (Marsupialia, Bettongia gaimardi). Am J Physiol Reg I 271:R586–R592

    CAS  Google Scholar 

  • Zaninovich AA, Raices M, Rebagliati I, Ricci C, Hagmüller K (2002) Brown fat thermogenesis in cold-acclimated rats is not abolished by the suppression of thyroid function. Am J Physiol Endoc M 283:E496–E502

    CAS  Google Scholar 

  • Zylan KD, Carlisle HJ (1991) Effect of ambient temperature on the paradoxical metabolic response to norepinephrine. Pharmacol Biochem Behav 43:577–582

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the German Academic Exchange Service (DAAD). ETP is supported by a scholarship of the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Information and Communication Technologies (ICT Centre); MJ is supported by a German Research Foundation (DFG) fellowship (JA1884/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Polymeropoulos.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polymeropoulos, E.T., Jastroch, M. & Frappell, P.B. Absence of adaptive nonshivering thermogenesis in a marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). J Comp Physiol B 182, 393–401 (2012). https://doi.org/10.1007/s00360-011-0623-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0623-x

Keywords

Navigation