Skip to main content
Log in

Detection of saline-based refractive index changes via bilayer ZnO/Ag-coated glass optical fiber sensor

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The combination of sensitive nanostructure thin films and optical fiber offers the great prospective for understanding the novel sensor concepts. The partially unclad and bilayer zinc oxide (ZnO)/silver (Ag)-coated multimode glass fiber as a simple and reliable probe is proposed in this work to detect the ambient refractive index changes using two broadband sources of IR and UV–Vis. The wavelength and intensity of propagating light both are modulated when the saline concentration is varied. The appropriate etching time for partially removing the cladding suitable for both IR and UV–Vis sources is 53 min. The fabricated ZnO/Ag/fiber sensor exhibits excellent repeatability and high sensitivity to saline with different concentrations from 0 to 30% at room temperature. Among the sensors probe, higher sensitivity is observed for ZnO/Ag/fiber sample when IR is used as a light source. In this sensor by changing the refractive index of the media from ~ 1 to ~ 1.38, the normalized intensity drop to 0.6 of its maximum value and corresponding wavelength shifted from ~ 1559 to ~ 1585 nm. The high sensitivity of fabricated probe is attributed to two phenomena related to bilayer structure of sensing probe: first, the uncontinuous Ag coating which makes the optical tunneling to the outer layer be possible and, second, altering the optical properties of ZnO by oxygen absorbance through interaction of saline by ZnO nanostructure and changing the refractive index of the deposited layer. The wavelength and intensity are found to be less sensitive for both partially unclad and ZnO/Ag/fiber once UV–Vis is used as a light source, which is due to slighter penetration of evanescent wave in the cladding part compared to IR source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Hernaez, C.R. Zamarreño, S. Melendi-Espina, L.R. Bird, A.G. Mayes, F.J. Arregui, Sensors 17, 155 (2017)

    Article  Google Scholar 

  2. T. Wang, S. Korposh, S. James, R. Tatam, S.-W. Lee, Sens. Actuators B Chem. 185, 117 (2013)

    Article  Google Scholar 

  3. M. Konstantaki, A. Klini, D. Anglos, S. Pissadakis, Opt. Express 20, 8472 (2012)

    Article  ADS  Google Scholar 

  4. T. Libish, M. Bobby, J. Linesh, S. Mathew, C. Pradeep, V. Nampoori, P. Biswas, S. Bandyopadhyay, K. Dasgupta, P. Radhakrishnan, Laser Phys. 23, 045112 (2013)

    Article  ADS  Google Scholar 

  5. E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, W.J. Bock, Biosens. Bioelectron. 67, 93 (2015)

    Article  Google Scholar 

  6. L. Coelho, R. Queirós, J.L. Santos, M.C.L. Martins, D. Viegas, P. Jorge, Int. Soc. Opt. Photon. 8957, 89570K (2014)

    Google Scholar 

  7. C. Major, A. Nemeth, G. Radnoczi, Z. Czigany, M. Fried, Z. Labadi, I. Barsony, Appl. Surf. Sci. 255, 8907 (2009)

    Article  ADS  Google Scholar 

  8. Z.L. Wang, Mater. Today 7, 26 (2004)

    Article  Google Scholar 

  9. K.B. Mogensen, K. Kneipp, J. Phys. Chem. C 118, 28075 (2014)

    Article  Google Scholar 

  10. A. Liang, Q. Liu, G. Wen, Z. Jiang, Trends Anal. Chem. 37, 32 (2012)

    Article  Google Scholar 

  11. Y. Lin, Y. Zou, R.G. Lindquist, Biomed. Opt. Express 2, 478 (2011)

    Article  Google Scholar 

  12. L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Nano Lett. 6, 2060 (2006)

    Article  ADS  Google Scholar 

  13. D.R. Raj, S. Prasanth, T.V. Vineeshkumar, C. Sudarsanakumar, Sens. Actuators B Chem. 224, 600 (2016)

    Article  Google Scholar 

  14. S.K. Mishra, S. Bhardwaj, B.D. Gupta, IEEE Sens. J. 15, 1235 (2015)

    Article  ADS  Google Scholar 

  15. Z.-J. Ke, D.-L. Tang, X. Lai, Z.-Y. Dai, Q. Zhang, Optik 157, 1094 (2018)

    Article  ADS  Google Scholar 

  16. S.M. Spuler, D. Richter, M.P. Spowart, K. Rieken, Appl. Opt. 50, 842 (2011)

    Article  ADS  Google Scholar 

  17. Y. He, Y. Ma, Y. Tong, X. Yu, Z. Peng, J. Gao, F.K. Tittel, Appl. Phys. Lett. 111, 241102 (2017)

    Article  ADS  Google Scholar 

  18. S. Azad, E. Sadeghi, R. Parvizi, A. Mazaheri, Mater. Sci. Semicond. Process. 66, 200 (2017)

    Article  Google Scholar 

  19. A. Chaudhari, A. Shaligram, Sens. Actuators A 100, 160 (2002)

    Article  Google Scholar 

  20. C. Liu, L. Yang, Q. Liu, F. Wang, Z. Sun, T. Sun, H. Mu, P.K. Chu, Plasmonics 13, 779 (2018)

    Article  Google Scholar 

  21. E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, T.M. Monro, Sensors 15, 25090 (2015)

    Article  Google Scholar 

  22. Z. Samavati, A. Samavati, A.F. Ismail, M.A. Rahman, M.H.D. Othman, Chin. Opt. Lett. 16, 090602 (2018)

    Article  Google Scholar 

  23. S. Azad, E. Sadeghi, R. Parvizi, A. Mazaheri, M. Yousefi, Opt. Laser Technol. 90, 96 (2017)

    Article  ADS  Google Scholar 

  24. J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, Y. Wang, Sens. Actuators B Chem. 230, 206 (2016)

    Article  Google Scholar 

  25. B. Renganathan, D. Sastikumar, G. Gobi, N.R. Yogamalar, A.C. Bose, Opt. Laser Technol. 43, 1398 (2011)

    Article  ADS  Google Scholar 

  26. Y. Zhao, Z.-Q. Deng, Q. Wang, Sens. Actuators B Chem. 192, 229 (2014)

    Article  Google Scholar 

  27. A. Rohrbach, Biophys. J. 78, 2641 (2000)

    Article  ADS  Google Scholar 

  28. Z. Tian, S.S.-H. Yam, J. Barnes, W. Bock, P. Greig, J.M. Fraser, H.-P. Loock, R.D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008)

    Article  ADS  Google Scholar 

  29. Y. Zhang, M. Lei, H. Hu, Y. Zhao, J. Li, H. Gao, Instrum. Sci. Technol. 46, 1 (2018)

    Article  Google Scholar 

  30. S. Zhu, F. Pang, S. Huang, F. Zou, Y. Dong, T. Wang, Opt. Express 23, 13880 (2015)

    Article  ADS  Google Scholar 

  31. S. Peng, J.M. McMahon, G.C. Schatz, S.K. Gray, Y. Sun, Proc. Natl. Acad. Sci. 107, 14530 (2010)

    Article  ADS  Google Scholar 

  32. H.E. de Bruijn, R.P.H. Kooyman, J. Greve, Appl. Opt. 31, 440 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Universiti Teknologi Malaysia through the Grant vote number of R.J130000.7609.4C112. The authors would also like to thank Research Management Centre (RMC), Universiti Teknologi Malaysia for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Samavati or A. F. Ismail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samavati, Z., Samavati, A., Ismail, A.F. et al. Detection of saline-based refractive index changes via bilayer ZnO/Ag-coated glass optical fiber sensor. Appl. Phys. B 125, 161 (2019). https://doi.org/10.1007/s00340-019-7272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7272-2

Navigation