Skip to main content

Advertisement

Log in

Fe-doped CoS2 nanoparticles supported CoS2 microspheres@N-doped carbon electrocatalyst for enhanced oxygen evolution reaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Non-noble electrocatalysts (such as transition metal sulfides) have been attractive to substitute noble-metal catalysts for oxygen evolution reaction (OER) to advance the practical application of clean energy. Herein, a Fe-doped CoS2 nanoparticles supported CoS2 microspheres@N-doped carbon (Fe-CoS2/CoS2@NC) is prepared as an efficient OER electrocatalyst. The Fe-CoS2/CoS2@NC composite is derived by sulfurizing the metanilic-intercalated Co(OH)2 microspheres decorated with binary active CoFe-Prussian blue analogue (CoFe-PBA) nanoparticles. The obtained composite combines the advantageous characteristics for enhancing electrocatalytic performances: binary active Fe-CoS2 derived from CoFe-PBA, active CoS2, N-doped carbon scaffold to improve electronic conductivity, the appropriate specific surface area and meso/macroporous size distribution to afford rich active sites. The Fe-CoS2/CoS2@NC requires an overpotential of 300 mV to reach a current density of 10 mA cm−2 with a Tafel slope of 72 mV dec−1 in 1.0 M KOH, outperforming those of NC/CoS2, NC/Fe-CoS2 and CoS2. Furthermore, the enhancement is experimentally supported by the low charge-transfer resistance and the large electrochemical active surface area during the OER. The synthesis approach could be extended to provide a tunable hydroxide/PBAs precursor-based approach for designing and preparing hierarchical structures as electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.P. Kumar, G. Murugadoss, R.V. Mangalaraja, M.R. Kumar, Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium. Appl. Phys. A. 127, 66 (2021)

    Article  ADS  Google Scholar 

  2. J. Hao, W. Luo, W. Yang, L. Li, W. Shi, Origin of the enhanced oxygen evolution reaction activity and stability of a nitrogen and cerium Co-doped CoS2 electrocatalyst. J. Mater. Chem. A. 8, 22694–22702 (2020)

    Article  Google Scholar 

  3. Q. Hu, X. Huang, Z. Wang, G. Li, Z. Han, H. Yang, P. Liao, X. Ren, Q. Zhang, J. Liu, C. He, Slower removing ligands of metal organic frameworks enables higher electrocatalytic performance of derived nanomaterials. Small 16, 2002210 (2020)

    Article  Google Scholar 

  4. S.B. Kale, V.C. Lokhande, S.J. Marje, U.M. Patil, J.H. Kim, C.D. Lokhande, Chemically deposited Co3S4 thin film: morphology dependant electrocatalytic oxygen evolution reaction. Appl. Phys. A. 126, 206 (2020)

    Article  ADS  Google Scholar 

  5. J. Zhou, Y.B. Dou, A. Zhou, R.M. Guo, M.J. Zhao, J.R. Li, MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 7, 1602643 (2017)

    Article  Google Scholar 

  6. X. He, Y.D. Huang, X.T. Sun, P. Du, Z.B. Zhao, R.Y. Wang, H. Yang, Y. Wang, K. Huang, Boosting the electrochemical performance of mesoporous NiCo2O4 oxygen evolution catalysts by facile surface modifying. Appl. Phys. A. 126, 841 (2020)

    Article  ADS  Google Scholar 

  7. Y.Y. Zhang, X. Zhang, Z.Y. Wu, B.B. Zhang, Y. Zhang, W.J. Jiang, Y.G. Yang, Q.H. Kong, J.S. Hu, Fe/P dual doping boosts the activity and durability of CoS2 polycrystalline nanowires for hydrogen evolution. J. Mater. Chem. A. 7, 5195–5200 (2019)

    Article  Google Scholar 

  8. K. Srinivas, Y. Chen, X. Wang, B. Wang, M. Karpuraranjith, W. Wang, Z. Su, W. Zhang, D. Yang, Constructing Ni/NiS heteronanoparticle-embedded metal–organic framework-derived nanosheets for enhanced water-splitting catalysis. ACS Sustain. Chem. Eng. 9, 1920–1931 (2021)

    Article  Google Scholar 

  9. Z. Chen, R. Wu, M. Liu, Y. Liu, S. Xu, Y. Ha, Y. Guo, X. Yu, D. Sun, F. Fang, Tunable electronic coupling of cobalt sulfide/carbon composites for optimizing oxygen evolution reaction activity. J. Mater. Chem. A. 6, 10304–10312 (2018)

    Article  Google Scholar 

  10. Y.H. Deng, B.X. Tao, C. Ye, Q. Zhang, G. Chen, X.H. Wang, Y. Shi, J.R. Chen, H.Q. Luo, N.B. Li, N-doped cobalt disulfide decorated on carbon cloth as an efficient electrode for oxygen generation. Int. J. Hydrog. Energy 44, 16615–16623 (2019)

    Article  Google Scholar 

  11. L.M. Cao, D. Lu, D.C. Zhong, T.B. Lu, Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coord. Chem. Rev. 407, 213156 (2020)

    Article  Google Scholar 

  12. K. Yuan, D. Lützenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang, M.K.H. Leung, Y. Chen, U. Scherf, Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 142, 2404–2412 (2020)

    Article  Google Scholar 

  13. Q. Liang, J. Chen, F. Wang, Y. Li, Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord. Chem. Rev. 424, 213488 (2020)

    Article  Google Scholar 

  14. D. Shao, P. Li, R. Zhang, C. Zhao, D. Wang, C. Zhao, One-step preparation of Fe-doped Ni3S2/rGO@NF electrode and its superior OER performances. Int. J. Hydrog. Energy 44, 2664–2674 (2019)

    Article  Google Scholar 

  15. N. Suo, Z. Dou, L. Cui, Interface and composition engineering of vanadium doped cobalt nickel sulfide/phosphide heterostructure for efficient water splitting. Electrochim. Acta. 368, 137602 (2021)

    Article  Google Scholar 

  16. N. Yao, P. Li, Z. Zhou, R. Meng, G. Cheng, W. Luo, Nitrogen engineering on 3D dandelion-flower-like CoS2 for high-performance overall water splitting. Small 15, 1901993 (2019)

    Article  Google Scholar 

  17. Y. Zhou, M. Luo, Z. Zhang, W. Li, X. Shen, W. Xia, M. Zhou, X. Zeng, Iron doped cobalt sulfide derived boosted electrocatalyst for water oxidation. Appl. Surf. Sci. 448, 9–15 (2018)

    Article  ADS  Google Scholar 

  18. J. Wang, F. Bai, X. Chen, Y. Lu, W. Yang, Intercalated Co(OH)2-derived flower-like hybrids composed of cobalt sulfide nanoparticles partially embedded in nitrogen-doped carbon nanosheets with superior lithium storage. J. Mater. Chem. A. 5, 3628–3637 (2017)

    Article  Google Scholar 

  19. S. Kundu, B. Malik, A. Prabhakaran, D.K. Pattanayak, V.K. Pillai, Topotactic transition of α-Co(OH)2 to β-Co(OH)2 anchored on CoO nanoparticles during electrochemical water oxidation: synergistic electrocatalytic effects. Chem. Commun. 53, 9809–9812 (2017)

    Article  Google Scholar 

  20. W.L. Xin, W.J. Jiang, Y.J. Lian, H. Li, S. Hong, S.L. Xu, H. Yan, J.S. Hu, NiS2 nanodotted carnation-like CoS2 for enhanced electrocatalytic water splitting. Chem. Commun. 55, 3781–3784 (2019)

    Article  Google Scholar 

  21. Q. Zhang, D.F. Yan, Z.Z. Nie, X.B. Qiu, S.Y. Wang, J.M. Yuan, D.W. Su, G.X. Wang, Z.J. Wu, Iron-doped NiCoP porous nanosheet arrays as a highly efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 1, 571–579 (2018)

    Article  Google Scholar 

  22. G.W. He, W. Zhang, Y.D. Deng, C. Zhong, W.B. Hu, X.P. Han, Engineering pyrite-type bimetallic Ni-doped CoS2 nanoneedle arrays over a wide compositional range for enhanced oxygen and hydrogen electrocatalysis with flexible property. Catalysts 7, 366 (2017)

    Article  Google Scholar 

  23. J.H. Yu, G.Z. Cheng, W. Luo, Ternary nickel-iron sulfide microflowers as a robust electrocatalyst for bifunctional water splitting. J. Mater. Chem. A. 5, 15838–15844 (2017)

    Article  Google Scholar 

  24. J. Zhao, X. Zhang, M. Liu, Y.Z. Jiang, M. Wang, Z.Y. Li, Z. Zhou, Metal-organic-framework-derived porous 3D heterogeneous NiFex/NiFe2O4@NC nanoflowers as highly stable and efficient electrocatalysts for the oxygen-evolution reaction. J. Mater. Chem. A. 7, 21338–21348 (2019)

    Article  Google Scholar 

  25. L.F. Gao, C.Y. Guo, X.J. Liu, X.J. Ma, M.Z. Zhao, X. Kuang, H. Yang, X.J. Zhu, X. Sun, Q. Wei, Co-doped FeS2 with a porous structure for efficient electrocatalytic overall water splitting. New. J. Chem. 44, 1711–1718 (2020)

    Article  Google Scholar 

  26. H.B. Wu, J. Wang, J. Yan, Z.X. Wu, W. Jin, MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co-Fe-P-Se as efficient bifunctional OER/ORR catalysts. Nanoscale 11, 20144–20150 (2019)

    Article  Google Scholar 

  27. J.M. Rhodes, J.R. McBride, J.E. Macdonald, Synthesis of FeS2–CoS2 core–frame and core–shell hybrid nanocubes. Chem. Mater. 30, 8121–8125 (2018)

    Article  Google Scholar 

  28. X. Du, Z. Yang, Y. li, Y. Gong, M. Zhao, , Controlled synthesis of Ni(OH)2/Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting. J. Mater. Chem. A. 6, 6938–6946 (2018)

    Article  Google Scholar 

  29. H.J. Liu, Q. He, H.L. Jiang, Y.X. Lin, Y.K. Zhang, M. Habib, S.M. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting. ACS Nano 11, 11574–11583 (2017)

    Article  Google Scholar 

  30. F. Jing, Q.Y. Lv, J. Xiao, Q.J. Wang, S. Wang, Highly active and dual-function self-supported multiphase NiS-NiS2-Ni3S2/NF electrodes for overall water splitting. J. Mater. Chem. A. 6, 14207–14214 (2018)

    Article  Google Scholar 

  31. X. Li, Y.G. Sun, X. Xu, Y.X. Wang, S.L. Chou, A.M. Cao, L.B. Chen, S.X. Dou, Lotus rhizome-like S/N-C with embedded WS2 for superior sodium storage. J. Mater. Chem. A. 7, 25932–25943 (2019)

    Article  Google Scholar 

  32. C.G. Wang, H.W. Song, C.C. Yu, Z. Ullah, Z.X. Guan, R.R. Chu, Y.F. Zhang, L.Y. Zhao, Q. Li, L.W. Liu, Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A. 8, 3421–3430 (2020)

    Article  Google Scholar 

  33. D.C. Nguyen, D.T. Tran, T.L.L. Doan, D.H. Kim, N.H. Kim, J.H. Lee, Rational design of core@shell structured CoSx@Cu2MoS4 hybridized MoS2/N, S-codoped graphene as advanced electrocatalyst for water splitting and Zn-air battery. Adv. Energy Mater. 10, 1903289 (2020)

    Article  Google Scholar 

  34. Y.Y. Yi, W. Zhao, Z.H. Zeng, C.H. Wei, C. Lu, Y.L. Shao, W.Y. Guo, S.X. Dou, J.Y. Sun, ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage. Small 16, 1906566 (2020)

    Article  Google Scholar 

  35. J.W. Su, G.L. Xia, R. Li, Y. Yang, J.T. Chen, R.H. Shi, P. Jiang, Q.W. Chen, Co3ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. J. Mater. Chem. A. 4, 9204–9212 (2016)

    Article  Google Scholar 

  36. H. Ding, X.K. Zhang, J.Q. Fan, X.Q. Zhan, L. Xie, D. Shi, T. Jiang, F.C. Tsai, MOF-templated synthesis of Co3O4@TiO2 hollow dodecahedrons for high-storage-density lithium-ion batteries. ACS Omega 4, 13241–13249 (2019)

    Article  Google Scholar 

  37. X. Zhang, W. Shen, Z. Li, D. Wang, J. Qi, C. Liang, Carbon-based active support for water oxidation electrocatalyst: making full use of the available surface area. Carbon 167, 548–558 (2020)

    Article  Google Scholar 

  38. H. Zhong, X. Cheng, H. Xu, L. Li, D. Li, P. Tang, N. Alonso-Vante, Y. Feng, Carbon fiber paper supported interlayer space enlarged Ni2Fe-LDHs improved OER electrocatalytic activity. Electrochim. Acta. 258, 554–560 (2017)

    Article  Google Scholar 

  39. J. Zhang, R. Cui, C. Gao, L. Bian, Y. Pu, X. Zhu, X.A. Li, W. Huang, Cation-modulated HER and OER activities of hierarchical VOOH hollow architectures for high-efficiency and stable overall water splitting. Small 15, 1904688 (2019)

    Article  Google Scholar 

  40. W. Dai, T. Lu, Y. Pan, Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J. Power. Sources. 430, 104–111 (2019)

    Article  ADS  Google Scholar 

  41. F.Z. Sun, C.Q. Li, B. Li, Y.Q. Lin, Amorphous MoSx developed on Co(OH)2 nanosheets generating efficient oxygen evolution catalysts. J. Mater. Chem. A. 5, 23103–23114 (2017)

    Article  Google Scholar 

  42. G.L. Li, C. Liu, Z. Zhang, B.H. Cui, Y.N. Chen, Y. Deng, W.B. Hu, Nano-manufacturing of Co(OH)2@NC for efficient oxygen evolution/reduction reactions. J. Mater. Sci. Technol. 81, 131–138 (2021)

    Article  Google Scholar 

  43. Z.Y. Wang, L. Wang, S. Liu, G.R. Li, X.P. Gao, Conductive CoOOH as carbon-free sulfur immobilizer to fabricate sulfur-based composite for lithium–sulfur battery. Adv. Funct. Mater 29, 1901051 (2019)

    Article  Google Scholar 

  44. L. Yan, B. Zhang, Z.G. Liu, J. Zhu, Synergy of copper doping and oxygen vacancies in porous CoOOH nanoplates for efficient water oxidation. Chem. Eng. J 405, 126198 (2021)

    Article  Google Scholar 

  45. X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, W. Hu, Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv. Energy Mater. 8, 1800935 (2018)

    Article  Google Scholar 

  46. M. Zhao, W. Li, J. Li, W. Hu, C.M. Li, Strong electronic interaction enhanced electrocatalysis of metal sulfide clusters embedded metal–organic framework ultrathin nanosheets toward highly efficient overall water splitting. Adv. Sci. 7, 2001965 (2020)

    Article  Google Scholar 

  47. A. Gaur, P.K. Sachdeva, R. Kumar, T. Maruyama, C. Bera, V. Bagchi, Ultrathin MoS2 wrapped N-doped carbon-coated cobalt nanospheres for OER applications. Sustain. Energy Fuels. 5, 801–807 (2021)

    Article  Google Scholar 

  48. R. Ma, Y. Zhou, Y. Chen, P. Li, Q. Liu, J. Wang, Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst. Angew. Chem. Int. Ed. 54, 14723–14727 (2015)

    Article  Google Scholar 

  49. S.S. Li, X.G. Hao, A. Abudula, G.Q. Guan, Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J. Mater. Chem. A. 7, 18674–18707 (2019)

    Article  Google Scholar 

  50. N. Yao, T. Tan, F. Yang, G.Z. Cheng, W. Luo, Well-aligned metal–organic framework array-derived CoS2 nanosheets toward robust electrochemical water splitting. Mater. Chem. Front. 2, 1732–1738 (2018)

    Article  Google Scholar 

  51. Y. Zhan, S.Z. Yu, S.H. Luo, J. Feng, Q. Wang, Nitrogen-coordinated CoS2@NC yolk–shell polyhedrons catalysts derived from a metal–organic framework for a highly reversible Li-O2 battery. ACS Appl. Mater. Interfaces. 13, 17658–17667 (2021)

    Article  Google Scholar 

  52. L.M. Guo, J. Deng, G.Z. Wang, Y.N. Hao, K. Bi, X.H. Wang, Y. Yang, N, P-doped CoS2 embedded in TiO2 nanoporous films for Zn–Air batteries. Adv. Funct. Mater. 28, 1804540 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1607128, 21521005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sailong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2072 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Chang, YX., Kang, H. et al. Fe-doped CoS2 nanoparticles supported CoS2 microspheres@N-doped carbon electrocatalyst for enhanced oxygen evolution reaction. Appl. Phys. A 127, 465 (2021). https://doi.org/10.1007/s00339-021-04614-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04614-6

Keywords

Navigation