Skip to main content
Log in

Efficient photocatalytic nitrogen fixation over up-conversion nonlinear optical material Pr3+:LiNbO3 under visible light irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ammonia (NH3) synthesis is a critical chemical process to develop nitrogen-containing commodities which remains a significant challenge in chemistry and industry. Photocatalysis reduction has been deemed as one of the most promising strategies for N2 fixation under mild conditions. Herein, a series of Pr doped LiNbO3 (Pr3+:LiNbO3) were synthesized by a facile sol–gel method. Results showed that the Pr3+:LiNbO3 upconverted visible light into ultraviolet light and had the highest up-conversion efficiency when the molar ratio of Pr3+ was 2.5 mol%. In addition, the oxygen vacancies generated by the incorporation of Pr3+ into the LiNbO3 crystal lattice acted as active sites boosting the adsorption and activation of N2. The NH4+ production rate reached the highest of 30.72 μmol/L, attributed to the synergistic effects combining spontaneous polarization of the nonlinear optical (NLO) material LiNbO3 and up-conversion luminescence of Pr3+, which not only broaden the adsorption range of solar light but also enhance the charge separation. The up-conversion NLO material Pr3+:LiNbO3 in this study provides a novel alternative for guiding the design of ammonia synthesis photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Qiu, X.Y. Xie, J. Qiu, W.H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A.M. Asiri, G. Cui, B. Tang, X. Sun, Nat Commun. 9, 3485 (2018)

    Article  ADS  Google Scholar 

  2. T. Kandemir, M.E. Schuster, A. Senyshyn, M. Behrens, R. Schlogl, Angew. Chem Int Ed Engl. 52, 12723 (2013)

    Article  Google Scholar 

  3. R. Li, Chin. J. Catal. 39, 1180 (2018)

    Article  Google Scholar 

  4. X. Chen, N. Li, Z. Kong, W.J. Ong, X. Zhao, Mater. Horiz. 5, 9 (2018)

    Article  Google Scholar 

  5. W. Zhao, H. Xi, M. Zhang, Y. Li, J. Chen, J. Zhang, X. Zhu, Chem Commun (Camb) 51, 4785 (2015)

    Article  Google Scholar 

  6. T. Fei, L. Yu, Z. Liu, Y. Song, F. Xu, Z. Mo, C. Liu, J. Deng, H. Ji, M. Cheng, Y. Lei, H. Xu, H. Li, J Colloid Interface Sci. 557, 498 (2019)

    Article  ADS  Google Scholar 

  7. S. Deng, Z. Yang, G. Lv, Y. Zhu, H. Li, F. Wang, X. Zhang, Appl. Phys. A. 125, (2019)

  8. C. Shu, A. Noble, V.K. Aggarwal, Angew. Chem Int Ed Engl. 58, 3870 (2019)

    Article  Google Scholar 

  9. F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, Angew. Chem Int Ed Engl. 58, 10061 (2019)

    Article  Google Scholar 

  10. K. D. Baklanova, A. V. Solnyshkin, I. L. Kislova, S. I. Gudkov, A. N. Belov, V. I. Shevyakov, R. N. Zhukov, D. A. Kiselev, M. D. Malinkovich, Physica Status Solidi (a). 215, (2018)

  11. X. Wang, W. Yan, L. Zhang, L. Shi, H. Chen, Y. Zhang, M. Wu, P. Zhang, Opt. Mater. Express. 5, (2015)

  12. B. Zielinska, M. Janus, R. Kalenczuk, Open Chemistry. 11, (2013)

  13. L. Yin, Y. Li, J. Wang, Y. Zhai, Y. Kong, J. Gao, G. Han, P. Fan, J. Lumin. 132, 3010 (2012)

    Article  Google Scholar 

  14. L. Sun, L. Li, R. Gao, K. Tang, L. Fu, X.C. Ai, J.P. Zhang, Phys Chem Chem Phys. 20, 17141 (2018)

    Article  Google Scholar 

  15. N. Tyagi, A.A. Reddy, R. Nagarajan, Opt. Mater. 33, 42 (2010)

    Article  ADS  Google Scholar 

  16. P. W. Jaschin, K. B. R. Varma, Journal of Applied Physics. 122, (2017)

  17. N. Sinclair, E. Saglamyurek, M. George, R. Ricken, C. La Mela, W. Sohler, W. Tittel, J. Lumin. 130, 1586 (2010)

    Article  Google Scholar 

  18. S. Bharathkumar, M. Sakar, N. Ponpandian, S. Balakumar, Mater. Res. Bull. 101, 107 (2018)

    Article  Google Scholar 

  19. P. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen, J. Low, R. Long, W. Liu, P. Ding, Y. Wu, Y. Xiong, J Am Chem Soc. 142, 12430 (2020)

    Article  Google Scholar 

  20. R. Shi, Y. Zhao, G.I.N. Waterhouse, S. Zhang, T. Zhang, ACS Catal. 9, 9739 (2019)

    Article  Google Scholar 

  21. H. Li, J. Shang, Z. Ai, L. Zhang, J. Am Chem Soc. 137, 6393 (2015)

    Article  Google Scholar 

  22. Y. Fang, J. Lang, J. Wang, Q. Han, Z. Zhang, Q. Zhang, J. Yang, S. G. Xing, Appl. Phys. A. 124, (2018)

  23. L. Sun, R. Gao, T. Pan, X.C. Ai, L. Fu, J.P. Zhang, Nanoscale. 11, 18150 (2019)

    Article  Google Scholar 

  24. T. Su, Y. Yang, Y. Na, R. Fan, L. Li, L. Wei, B. Yang, W. Cao, ACS Appl Mater Interfaces. 7, 3754 (2015)

    Article  Google Scholar 

  25. H. Xu, Y. Li, M. Ding, W. Chen, K. Wang, C. Lu, ACS Sustain. Chem. Eng. 6, 7042 (2018)

    Article  Google Scholar 

  26. H. Huang, Y. He, Y. Guo, R. He, Z. Lin, Y. Zhang, Solid State Sci. 46, 37 (2015)

    Article  ADS  Google Scholar 

  27. C. Hu, C. Sun, J. Li, Z. Li, H. Zhang, Z. Jiang, Chem. Phys. 325, 563 (2006)

    Article  Google Scholar 

  28. E.L. Cates, A.P. Wilkinson, J.H. Kim, J. Lumin. 160, 202 (2015)

    Article  Google Scholar 

  29. M.E. Lines, A.M. Glass, G. Burns, Phys. Today 31, 56 (1978)

    Article  Google Scholar 

  30. T. Huang, S. Pan, L. Shi, A. Yu, X. Wang, Y. Fu, Nanoscale. 12, 1833 (2020)

    Article  Google Scholar 

  31. S. Zhang, Y. Zhao, R. Shi, G. I. N. Waterhouse, T. Zhang, Energy Chem. 1, (2019)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51674043, 51702026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiazhang Li or Chao Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Chu, X., He, C. et al. Efficient photocatalytic nitrogen fixation over up-conversion nonlinear optical material Pr3+:LiNbO3 under visible light irradiation. Appl. Phys. A 127, 35 (2021). https://doi.org/10.1007/s00339-020-04186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04186-x

Keywords

Navigation